YAMAHA르를

YM3802

MCS（MIDI Communication \＆Service Controller）

APPLICATION MANUAL

＊YAMAHA

TABLE OF CONTENTS

Chapter Page

1. Introduction 1
1.1 General 1
1.2 Features 2
1.3 Terminology 4
2. Simplified description of functions 6
2.1 Pin assignment. 6
2.2 Internal block functions 9
2.3 Register layout 15
3. Communication functions 17
3.1 Serial communication 17
3.2 Cassette tape interface (FSK modulation) 24
3.3 Functions related to transmission 31
3.4 Functions related to reception 34
4. MIDI service functions 40
4.1 MIDI clock controller and related functions 40
4.2 Sequencer 48
4.3 SYNC controller and CLICK counter 53
4.4 Address hunter 56
4.5 Utilization for other than MIDI services 60
5. Other functions 61
5.1 General-purpose timer 61
$5.2 \mathrm{I} / \mathrm{O}$ controller 63
5.3 IRQ controller. 65
5.4 System control 71
6. Interfaces 73
6.1 Clock interface 73
6.2 CPU interface 74
6.3 Transmit/receive interface 75
7. Electrical characteristics 76
Appendixes - A. Pin assignment I
B. Block diagram II
C. Register map III
D. Table of register functions IV
E. Table of IRQ setting/clearing status IX
F. Circuit example(s) XI
G. Sample program XII
H. Package outline XXXI

1. INTRODUCTION

1.1 General

The YM3523 is an LSI device featuring an asynchronous serial communication interface, a frequency divider that acts a communication rate generator, an interface for the cassette tape recorder, transmit/receive data buffers, timers, counters and a parallel input/output port. With this LSI a part of the MIDI data processing can be performed by hardware.

The YM3523 LSI has two output pins and three counters that synchronize with the MIDI clock and the tape SYNC can be easily realized. The MIDI clock is generated by the MIDI clock timer, the tape SYNC signal or the clock message contained in the received serial data. Another way of the generation of the MIDI clock is a process with the host CPU control. This LSI has the priority transmission and reception capability of the MIDI system real-time message over other messages and also can support the processing of the system exclusive message.

Each of the MIDI counters can be utilized as general-purpose timer/counter.

1.2 Features

- Serial communication

7- or 8 -bits Character,
1- or 2-bits Stop bit, 1- or 4-bits Parity bit, Start bit error detection, Automatic break detection and break character generation, Character length, Types of parity and stop bits and communication rate are selectable for transmission and reception separately.

- Cassette tape recorder interface

One wave/two wave FSK modulation, Automatic follow-up function for polarity and phase, Transfer-rate check function, Used for ordinary serial communication or cassette tape recorder interface in transmission and reception (separately).

- Communication rate generater

Communication rate generation of $75 \sim 19200 \mathrm{bps}$ and 31.25 K bps.
Reception is performed at the internal clock rate that is 16 times the communication rate.

Communication rates of DC through 125 K bps can be obtained by selecting the frequency of a communication rate generating clock.

- General-purpose 8-bit parallel input/output port.
- General-purpose 14 -bits timer.
- 128 bytes FIFO buffer for reception and 16 bytes FIFO buffer for transmission.
- MIDI support functions

SYNC out, CLOCK out; output of a pulse signal synchronized to the system real-time message.

Automatic transmitting function, priority transmitting function and priority receiving function (without involving the receiving FIFO buffer) of the system real-time message.

8 - and 15 -bit counters for counting the interpolated, high-accuracy signal of the MIDI clock.
Special 14 -bit timer for determining MIDI clock generation timing. Detecting function of the MIDI clock from the received serial data.

Tape SYNC function.
Automatic output of the tape SYNC signal
Active sense function
ID code check function for the system exclusive message.

- Vector output function according to 8 -level interrupt factors
- C-MOS, 3μ rule, 4 MHz maximum system clock, 10 mA power consumption
- Single 5V power supply, TTL level interface
- 40-pin plastic DIP package

1.3 Descriptions of terms

- MIDI

Abbreviation for Musical Instrument Digital Interface, a communication standard for interconnecting the synthesizer, sequencer, rhythm machine and computer. Established in 1983 among the musical instrument industry.

Operation and SYNC information on instruments, etc., can be transmitted real-time at a communication rate of 31.25 K bps by the asynchronous serial communication using a 10 -bit word comprising a start bit, eight data bits and a stop bit.

- Message

A communication unit of data for MIDI. One message is composed of one character of status byte and data byte whose length is status byte-dependent. The MSB of the status byte is 1 and that of the data byte is 0 .

- System real-time message

A classification of the MIDI message. A general term indicating 8 types of status bytes from (F8)h to (FF)h with no data byte included. To provide a higher degree of real-time processing these messages can be transmitted by interrupting other message's data byte. The meanings of these messages are as follows:

(F8)h	Timing Clock:	SYNC clock. Indicates the note value of the ninety-sixth note (equivalent to $1 / 24$ th of the length of the quarter note). Hereafter called the MIDI clock.
(F9)h	Undecided	
(FA)h Start:	Start command for sequencer, etc. Starts from the opening of music.	
(FB)h Continue:	Continuous start command for sequencer, etc.	
(FC)h Stop:	Stop command for sequencer, etc. Undecided	
(FD)h	Message indicating the transmitter and transmission line	
(FE)h Active Sensing:	Me operating normally. are	
(FF)h System Reset		

- System exclusive message

One of the MIDI messages.
Large data such as instrument tone parameters and nonstandard data are transferred with chis message.

Consists of status byte (F0)h and variable-length data byte. The first data byte is used as the ID code of a manufacturer. Thus the MIDI instrument manufacturer must have its ID code registered with the International MIDI standard committee. The format from the second data byte on can be decided by each manufacturer; a system exclusive message not in accordance with the manufacturer ID code can be neglected.

- Active sense message

One of the MIDI system real-time messages. Its status byte is (FE)h. The MIDI specification requires that a transmitter transmit any message at least once per 300 msec . If there is no message to be transmitted, this active sense message must be sent. When a receiver does not receive any message from a transmitter for 300 msec , the transmitter or its transmission line is considered to be abnormal. In this case the sound generation is stopped and the receiver resumes its own operation.
The receiver continues its own operation until it receives the first active sense message.

- FSK modulation

FSK is an abbreviation for frequency-shift keying, a form of digital signal recording on a magnetic (cassette) tape in which the 1 and 0 are represented by two distinct frequencies.
In the YM3523 the mark (H level $=1$) and space (L level $=0$) of the usual asynchronous serial signal are modulated with a frequency of two times the communication rate and a frequency equal to this rate, respectively. Demodulation function is also provided.
With this type of modulation interface to the magnetic tape is obtained. The definition mentioned above is used throughout this manual.

- Tape SYNC

Synchronizing multiple recording or automatic performance according to the SYNC signal recorded on a magnetic tape, etc.

- TCLK, TCLKM and TCLKF

One-cycle time of the clock signal being input to terminals CLK, CLKM and CLKF, respectively.

2. SIMPLIFIED DESCRIPTION OF FUNCTIONS

2.1 Pin assignment

The pin configuration is shown in Fig. 2.1.

- $\overline{\mathrm{IC}}$... Input

The YM3523 is reset by the L level input signal to this terminal. The reset pulse width must be more than 32 clocks of the system clock to the CLK terminal (32 TCLK).
The same reset operation can be made by the host CPU operation on the internal registers of YM-3523.

- CLK ... Input

System clock input terminal
The internal operation of the YM3523, input signal sampling and output signal changing are all performed in synchronization with the internal timing clock made by this system clock. The clock rate must be more than 32 times the communication rate used. In the case of an MIDI communication rate of 31.25 K bps at least a 1 MHz clock rate is necessary. The maximum rate is 4 MHz .

- CLKI ... Output

Internal timing clock output terminal.

- CLKM ... Input

Input terminal for a clock that generates an MIDI communication rate of 31.25 K bps (baud). Usually 1 MHz or 0.5 MHz is input, and $1 / 16$ or $1 / 32$ of this can be used as the communication rate.
This clock signal is divided to obtain a count clock for the general-purpose timer and the MIDI clock timer and also for the output pulse width at the SYNC and CLICK terminals. A divide-by-two circuit is included so that the same setting time can be obtained, irrespective of the input signal to the CLKM terminal (1 MHz or 0.5 MHz).

- CLKF ... Input

Input terminal for a clock that generates a communication rate of $75 \times 2^{\mathrm{n}}$ series.
Usually 614.4 KHz is input and communication rates from $1 / 8192 \mathrm{nd}$ of this frequency (75 bps) to $1 / 32$ nd of the same frequency (19200 bps) can be used. Can be used also for counting in the MIDI active sense function.

VDD	1	40	CLK
$R \times D$	2	39	CLKI
R×F	3	38	TEST-2
CLKM	4	37	$\overline{\mathrm{C}}$
CLKF	5	36	$\overline{\mathrm{R}} \mathrm{O}$
T×D	6	35	$\overline{V R}$
TxF	7	34	$\overline{\mathrm{RD}}$
SYNC	8	33	\bar{W}
CLICK	9	32	$\overline{\mathrm{CS}}$
$\overline{\text { TEST-0 }}$	10	31	A2
TEST-1	11	30	A1
P7	12	29	AO
P6	13	28	D7
P5	14	27	D6
P4	15	26	D5
P3	16	25	D4
P2	17	24	D3
P1	18	23	D2
PO	19	22	D1
$V_{S S}$	20	21	DO

Figure 2.1 Pin assignment

- D0 ~ D7 ... Input/Output

A0~A2 Input
$\overline{\mathrm{CS}} \quad$. Input
$\overline{\mathrm{WR}} \quad$. Input
$\overline{\mathrm{RD}}$........... Input
$\overline{\mathrm{VR}} \quad$. Input
$\overline{\text { IRQ }}$............ Input
These terminals are used to provide interface to the host CPU .

- $\overline{\text { TEST-0 }} \sim \overline{\text { TEST- }}$... Input

Terminals used for testing the LSI. Thus, no connections are generally made.

- RxD... Input

Serial data input terminal

- TxD ... Output

Serial data output terminal

- RxF ... Input

Audio signal input terminal from the magnetic tape such as a cassette tape. FSK-modulated serial data are input to this terminal at the TTL level.

- TxF ...Output

Audio signal output terminal to the magnetic tape such as a cassette tape. FSK-modulated serial data are output from this terminal at the TTL level.

- SYNC ... Output

A 2 msec width pulse is output from this terminal in synchronization with the MIDI clock. Used as a SYNC signal for other hardware.

- CLICK ... Output

A 2 msec width pulse is output from this terminal in synchronization with the MIDI clock divided. Used when a metronome, etc., which is synchronized with the MIDI, is configured.

- P0 ~ P7 ... Input/output

General-purpose I/O port with which the input/output direction of each bit can be separately set.

2.2 Internal block functions

The block diagram is given in Fig. 2.2.

- Transmitter

Receives data from the FIFO-ITx or FIFO-Tx. Appropriate start, parity and stop bits are added to the received data, which is then converted to serial data. This serial data is sent direct to the TxD terminal, or FSK-modulated and sent to the TxF terminal.

Communication rate, data length, type of parity bit and type of stop bit can each be set independent of the receiver, has the function of forcibly lowering the output to the break level (L level).

- FIFO-Tx

16-byte transmitting data buffer. General serial data transmission is made by setting the data in this buffer. Because of the FIFO method the arbitrarily-set data is processed by the transmitter in the same order that it was set. An interrupt signal is generated when all the data stored in the buffer are sent to the transmitter.

Whether or not the data set area is available in the buffer can be checked from the host CPU.

- FSK modulator

The transmitter serial data output is FSK-modulated. Its conversion rate is dependent upon the communication rate

If the serial data is sent to the TxD terminal, the SYNC terminal output signal is FSKmodulated at a transfer rate of 1200 bps , which is then sent to the TxF terminal. The modulation execution and halt can be controlled from the host CPU.

- Receiver

The serial data sent from the RxD terminal or the FSK demodulator is converted to the parallel data, and the parity and stop bits are checked. Usually, the parallel data and the error status are set in the FIFO-Rx.

Communication rate, data length, type of parity bit and type of stop bit can be set independent of the transmitter.

- FIFO-Rx

128-byte receiving data buffer. Usually, the data received by the receiver is set in the order it was received. This data can be read out anytime from the host CPU. The MIDI clock filter and the address hunter can prevent unnecessary data from being set in the FIFO-Rx. In addition to the 128 bytes for data storage the parity and stop bit check results are also stored for each data, therefore, this FIFO-Rx is in practice of the 10 bits $\times 128$ words of storage buffer.

An interrupt signal is generated after the receiver has received one-character data and set it in the empty buffer. The overrun error flag is set when new data is set in the buffer already full of data, permitting checking from the host CPU.

Figure 2.2 Block diagram

- FSK demodulator

The FSK-modulated signal input to the RxF terminal is demodulated and sent to the receiver in the form of usual serial signal. In this case the conversion rate is in accordance with the receiver communication rate. The sampling timing of the serial signal that follows the input signal fluctuation with time is sent to the receiver where the serial-to-parallel conversion is performed at this timing.

If the receiver handles the input signal at the RxD terminal this signal is demodulated at a transfer rate of 1200 bps and then sent to the SYNC detector. If the polarity accords, then the phase adjustment is performed at the time when the one wave-modulated data (L level) is demodulated. The positive or negative polarity is selectable.

Also, automatic polarity follow-up can be performed by the polarity detector circuit. The baud check circuit is included and the result can be checked from the host CPU. Since the level of the input signal at the RxF terminal can be directly checked from the host CPU, it is possible that only the adjustments of baud, polarity and phase are conducted by the software, then the demodulator output is utilized.

- Break detector

Break status detector circuit for the input signal to the receiver.
If the L-level input continues during the transfer period of two characters that conform with the communication rate, data length, parity bit and stop bit set by the receiver, it is regarded as a break condition and thus an interrupt signal is issued.

- FIFO-ITx

4-byte transmitting buffer used exclusively for the MIDI system real-time message.
If data is set in the FIFO-ITx, the transmitter will transmit this data, irrespective of whether the FIFO-Tx data is present or not.

- Idle detector and off-line detector

Functional blocks for the processing of the MIDI active sense.
The idle detector measures the interval between the serial data transmissions by the transmitter, and if there is no transmission for a period of 80 msec the MIDI active sense message is set in the FIFO-ITx.
The off-line detector measures the interval between the receiver's serial data reception and the parallel data output. If there is no reception for a period of 300 msec an interrupt signal is generated.

- MIDI clock filter

With this filter the MIDI clock message (F8)h is prevented from being transferred to the FIFO-Rx. This can reduce the host CPU access to the receiving data buffer, if the reception of the clock message is used by the IRQ, etc.

- Address hunter

When the MIDI system exclusive message is received, the manufacturer ID code or the manufacturer ID code plus one-byte ID code are checked against the ID code(s) pre-stored in the register. If there is no accord, this filter (address hunter) prevents the message from being transferred to the FIFO-Rx.

- SYNC detector and MIDI clock timer

Internal MIDI clock generation sources.
The MIDI clock timer is a 14 -bit programmable interval timer. The same type of timer is used as the general-purpose timer (described later). The MIDI clock timer generates the MIDI clock timing signal instead of interrupt signals.
The SYNC detector also generates the MIDI clock timing signal on the rising edge of the signal obtained by demodulating the tape SYNC signal that is input to the RxF terminal.
In addition, the MIDI message detector (see later) generates the MIDI clock timing signal when it detects the reception of the MIDI clock message (F8)h by the receiver. The host CPU can also directly provide this timing signal.

According to this timing, concurrent operation of several functional blocks within the YM3523 can be made.

- SYNC controller

Controls the SYNC signal output.
A 2 msec width pulse is sent to the SYNC terminal in accordance with the internal MIDI clock. Also, the FSK-modulated SYNC output signal is sent to the TxF terminal which is recorded on a magnetic tape for use as the SYNC signal for tape SYNC operation.

- CLICK counter

7-bit programmable counter to count the internal MIDI clocks.
This counter can be used as a general-purpose interval timer if the MIDI clock timer is employed as the MIDI clock generation source. When the values set in the register have been counted, a 2 msec width pulse is sent to the CLICK terminal and at the same time an interrupt signal is issued. Count operation restarts by the automatic load of the counter with the preset value.

- Sequence-MIDI clock interpolator, Recording counter and Playback counter

Functional blocks for time management based upon the internal MIDI clock.
The MIDI clock interpolator generates count clocks at an interval equal to $1 / \mathrm{nth}$ of the MIDI clock generation interval. This provision is used to advantage when application requiring higher clock resolution is encountered.
The recording counter is an 8 -bit readable fixed counter which generates an interrupt when the count reaches zero. This counter is usable as a real-time clock with its carry operation processed by the host CPU software.
The playback counter is a 15 -bit programmable subtractive counter which counts the MIDI clock interpolator-generated count clocks and issues an interrupt signal when the count reaches zero or becomes negative.

Although no automatic counter initialization is performed, the addition to the present count value is possible to cope with the host CPU's counter resetting delay.
If the MIDI clock timer is used as the MIDI clock generation source, these counters can be utilized for general purposes.

- MIDI clock controller-MIDI message detector, FIFO-IRx and MIDI message distributor Control blocks for the internal MIDI clock.
The MIDI message detector is a functional block that detects the reception of the MIDI system real-time message character by the receiver. When the reception of the clock message (F 8)h is detected by the receiver this detector generates the internal MIDI clock timing signal. Similarly, when the reception of the system real-time messages (F9)h \sim (FD)h is detected the detected message contents are set in the FIFO-IRx.
The FIFO-IRx is a 4-byte FIFO that processes the internal MIDI clock and keeps the process sequence of the system real-time data (messages) received by the receiver. When a selected MIDI clock timing signal (i.e., one of the MIDI clock timing signals of the MIDI

MIDI clock controller $\leftarrow_{-}^{-} \begin{aligned} & \text { MIDI message detector } \\ & \text { FIFO-IRx } \\ & \text { MIDI message distributor }\end{aligned}$
message detector. SYNC detector and MIDI clock timer) is generated, the (F 8)h is set in the FIFO-IRx. Also, the data (F9)h ~ (FD)h sent from the MIDI message detector are set in this FIFO buffer. If the (F8)h is present at the exit of the FIFO it is automatically brought out as the MIDI clock and sent to the MIDI message distributor, causing an interrupt signal to be issued. In case other system real-time message exists at the FIFO exit another interrupt signal is generated, and data is not brought out until directed by the host CPU.

The data at the exit of the FIFO-IRx can be arbitrarily read out from the host CPU, irrespective of the operation of the FIFO, eliminating the need to wait for the data processing by the FIFO-Rx. The MIDI message distributor controls the functional blocks whose operation depends upon the internal MIDI clock.

According to the (F8)h signal sent from the FIFO-IRx or to the host CPU direction, the distributor sends the MIDI clock signal simultaneously to each functional block. Also, by the direction of the host CPU, the system real-time messages (F9)h \sim (FD)h are sent to the functional blocks either independently or in unison, controlling their operation (start, stop and initialization).

The functional blocks controlled by this distributor are the CLICK counter, SYNC controller and sequencer. The loading of data into the FIFO-ITx is also controlled by the distributor.

- General-purpose timer

14-bit programmable interval timer (the same type as that for the MIDI clock timer)
This timer counts a fixed $8 \mu \mathrm{sec}$ clock. When the count of the values set in the register has been completed an interrupt signal is issued. The count restarts by the automatic load of the counter with the initial value.

- I/O controller

Functional block that provides the input/output control on the terminals P0 \sim P7.
Performs the setting of the I/O port input/output direction and of the output data. Both the input signal level at the input port terminal and the output signal level at the output port terminal can be read out.

- IRQ controller

Controls the output level at the $\overline{\text { IRQ }}$ terminal, status register and vector register, according to the 10 interrupt requests within the LSI and to the contents of the interrupt control register.

The status of interrupt requests is set by the bit map in the status register. The $\overline{\text { IRQ }}$ terminal output level goes low upon generation of an acknowledged interrupt request. From the interrupt requests acknowledged and being generated the vectors with high priority are set in the vector register. LSB of the vector is fixed at zero and the highest three bits are set by the host CPU.

2.3 Register layout

The register layout diagram is given in Fig. 2.3.
There are 38 registers built in to this LSI, as shown in this diagram. By way of example the register at the uppermost stage of the diagram is considered. R00 and IVR in this register are the register number and the register name, respectively. The register number's high-order digit and loworder digit are called the group number and the address number, respectively. A certain register can be accessed by first writing its group number into the R01 (RGR), then specifying its address number by the terminals $\mathrm{A} 0 \sim \mathrm{~A} 2$. Repeated group number entry into the R01 is not needed when the registers of the same group are to be accessed. The registers with the address numbers $0 \sim 3$ (R00~R03) can always be accessed, irrespective of the group number.

Register functions are described in relevant chapters.

A2, $11, A 0=000$		001	010	011	100	101	110	111
grovo-0	ROO IVR	RO1 RGR	$R 02$ LSR\qquad	RO3 ICR	RO4 IOR	ROS IMR	ROS IER	/ill/1/1
1					R14 OMR	R15 DCR	R16 DSR	817 ONR
2					R24 RRR	R25 RMR	R26 AMR	R27 ADR
3					R3- RSR	R3S RCR	(R36 ROR $/ 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1$	
4					R44 TRR	R4S TMR		
5					RS4 TSR	RES TCR	RSS TDR	Y/1/1/11
6					R64 FSR	R65 FCR	R65 CCR	R6\% CDR
7					R74 SRR	R7S SCR	R 76 SPRL	R77 SPRH
8					R34 GTRL	RSS Girh	886 MTRL	R87 MTRH
9					R94 EDR	ROS EOR	R96 ER	W/L/C/C/L

Figure 2.3 Register mop

3. COMMUNICATION FUNCTIONS

3.1 Serial communication

3.1.1. Communication method

Fig. 3.1 illustrates the message format of the asynchronous serial communication employed in the YM3523. There are several modes of message format, depending upon the data bit length, the existence of parity bit, the parity bit length, the stop bit length and the type of stop bit.

The data bit length of seven or eight bits is treated as one character.
The parity bit modes are one-bit, four-bit and no parity, and odd or even parity can be used. In the four-bit parity mode, a pair of data bits correspond to one parity bit, as shown in Fig. 3.2.

The stop bit length are one or two bits, and two modes exist for the two bits length, i.e., one mode with two consecutive marks (H level) and the other mode with one mark and one space (L level). Fig. 3.3 indicates the stop bit modes.

The communication rates available are $1 / 16$ or $1 / 32$ of the input clock rate supplied to the CLKM terminal, or $1 / 32$ nd, $1 / 64$ th, $\ldots . ., 1 / 8192$ nd of the input clock rate to the CLKF terminal. By inputting a clock of 1 MHz or 0.5 MHz to the CLKM terminal and MIDI communication rate of 31.25 K bps can be obtained. And, if 614.4 KHz is input to the CLKF terminal communication rates of from 75 bps to $19200 \mathrm{bps}\left(75 \times 2^{\mathrm{n}}\right.$ series) are available.

If the signal for the magnetic tape is handled by the internal FSK modulator and demodulator, the use of several CLKM communication rates (i.e., $1 / 16$ th and $1 / 32$ nd of the input) is inhibited.

3.1.2. Transmission procedure

When the transmit operation is acknowledged by the host CPU and data is set in the FIFO-Tx or FIFO-ITx, the transmitter adds the start bit, parity bit and stop bits to the data according to the transmit mode and transmits the data at the selected communication rate. When the data bit length is seven bits the MSB of the data set in the FIFO is ignored.

The transmitter output is sent direct to the TxD terminal or sent to the FSK modulator where the output is FSK-modulated per bit which is then routed to the TxF terminal.

3.1.3. Reception procedure

How the input signal to the RxF terminal is received is explained using Fig. 3.4. The receiver samples the input signal with the internal communication clock that is 16 times the communication rate (obtained by dividing the input clock at CLKM or CLKF terminal). If, under "waiting for a new message" condition, the receiver samples a space (L level) eight times after at least one mark (H level), it is recognized as a start bit. The eighth timing of the internal communication clock in this space condition is used as a midpoint of the start bit. Then the input sampling is performed by using every 16 th clock of the internal communication clock as a midpoint for each bit, i.e., data bit, parity bit and stop bit. At the time when the last stop bit is sampled the receiver will go into the wait state for a next message.

Figure 3.1 Communication signal formal

Figure 3.2 Data-bit, parity-bit relation in 4 bit parity mode
(a) I bit

(b) 2 bit HH type

(c) 2 bit LH type

Figure 3.3 Stop-bil length and type

Figure 3.4 Clock \& communication signal
(example in CLKM/32 or CLKF/32)

In the case of the reception of the FSK-modulated signal that is input to the RxF terminal, since the FSK demodulator generates a clock signal every time each bit is demodulated the per-bit sampling is performed based upon this clock. The start bit detection is made by the continuous reception of marks and spaces.

In either case, upon completion of the reception of one message 0 is added to the MSB in the case of the seven-bit length mode to form an eight-bit data signal. And, if any abnormal condition exists with the parity and stop bits the Parity Error and Framing Error signals are made active. These signals are loaded into the FIFO-Rx via the MIDI clock filter and address hunter and are accessible from the host CPU.

3.1.4. Operation of transmitter and receiver

The communication rate, communication mode (communication format) and wiring of the transmitter and receiver are set by means of registers R24, R25, R44 and R45. Register operations are prohibited when the transmitter and/or receiver are in operation. Fig. 3.5 shows the function of each register.

- TxRx (R44-b6) -- WRITE -

If 1 is set to the TxRx, the input to the RxD terminal is unconditionally sent to the TxD terminal.

- TxD/F (R44 - b5), RxD/F (R24 - b5) - WRITE -

If 0 is already set to the $\mathrm{TxD} / \mathrm{F}$, the transmitter serial output signal is sent to the TxD terminal as long as 1 is not set to the TxRx. At this time the serial input signal to the FSK modulator is the CLICK counter output signal to the CLICK terminal, and modulation is conducted at a rate of 1200 bps (CLKF/512). If 1 is set to the $\mathrm{TxD} / \mathrm{F}$, then the transmitter serial output signal becomes the serial input signal to the FSK modulator, and modulation is performed at the transmitter's communication rate. As long as 1 is not set to the TxRx the output at the TxD terminal has the H level. If 0 is already set to the $R x D / F$, the input signal to the $R x D$ terminal is used as the receiver input signal. At this time the FSK demodulator performs demodulation at a modulation rate of 1200 bps ($\mathrm{CLKF} / 512$), and its serial output signal is sent to the SYNC detector. If 1 is sent to the $\mathrm{RxD} / \mathrm{F}$, the FSK demodulator serial output signal becomes the receiver input, and the FSK demodulator conducts its operation at the communication rate of the receiver.

- R 44 - b4~b0, R24 - b4~b0 - WRITE -

According to the values set to these bits the communication rate of the transmitter and receiver is determined. By changing the input frequency to the CLKM and CLKF terminals the communication rate of the $110 \times 2^{\mathrm{n}}$ series, etc., can be realized. However, this alternation has an effect on the internal timers, SYNC and CLICK output pulse width and the active sense function.

R25 RMR	H Rx communication mode		
$\begin{gathered} b 7 \\ 5 \\ b 6 \end{gathered}$			
b5 $\mathrm{R} \times \mathrm{Cl}$	select data bit length	0:8 bit	1:7bit
b4 R×PE	enable parity-bit check	0 : disable	1 : enable
b3 R \times PL	select parity-bit length	0:1 bit	1:4 bit
b2 R×E/0	select parity-bit polarity	0 : even	1: odd
b1 R×SL	select stop-bit length	0:1 bit	1:2 bit
b0 $R \times S T$	select stop-bit type in 2 bit length	$0: \mathrm{HH}$	$1: \mathrm{LH}$

Figure 3.5 Regigter functions for serisl communication (1)

Figure 3.5 Register functions for serial communication (2)

- TxCL (R25 - b5), RxCL (R25 - b5) - WRITE -

Determines the data bit length of the communication message.

- TxPE (R45 - b4), RxPE (R25 - b4) - WRITE -

Determines whether parity is used or not.

- TxPL (R45 - b3), RxPL (R25 - b3) - WRITE -

Determines the parity bit length.
For the seven-bit data length one-bit parity is used, irrespective of the setting of this bit.

- TxE/O (R45 - b2), RxE/O (R25 - b2) - WRITE -

Determines the parity bit polarity.

- TxSL (R45 - b1), RxSL (R25 - b1) - WRITE -

Determines the stop bit length.

- TxST (R45 - b1), RxST (R25 - b1) - WRITE -

Determines the type of stop bit. If, for a stop bit length of 2,0 is set to this bit, 2 bits of mark (H level) is treated as stop bits; if 1 is set instead stop bits consists of one bit of space (L level) and one bit of mark. When a stop bit length is 1 setting of this bit is invalid.
3.1.5. Effects of the initial clear Refer to sections 3.3 \& 3.4 .

3.2 Magnetic tape interface (FSK modulation)

3.2.1. Modulation method

Fig. 3.6 shows the serial data and the FSK-modulated signal used in the YM3523.
As can be seen from this figure, the FSK-modulated signal is produced by replacing marks (1s) and spaces (0 s) in the serial data with two square waves and one square wave, respectively. When this signal is recorded and then reproduced by an audio cassette tape recorder, etc., distortions arise locally or wholly in the duty ratio and the communication rate; however, performing demodulation in synchronization with one- or two-wave signal can cope with these distortions.

3.2.2. Modulation procedure

When the modulation operation is acknowledged by the host CPU, the FSK modulator receives at the prescribed transfer rate the transmitter serial output signal or the SYNC output signal of the SYNC controller, modulates this signal and sends the modulated signal to the TxF terminal. In this case, the modulation rate for the transmitter serial output equals to the transmitter communication rate, while a modulation rate of 1200 bps is employed for the SYNC output signal. The CLKM communication rates of $1 / 16$ th and $1 / 32$ nd of the input frequency cannot be used.

3.2.3. Demodulation procedure

When the demodulation operation is acknowledged by the host CPU, the FSK demodulator demodulates the FSK-modulated signal which is input to the RxF terminal, and sends the serial signal to the receiver or the SYNC detector. If the serial data is to be sent to the receiver, the demodulation rate is determined by the communication rate set by the receiver. In this case, as described later, a clock signal is sent from the demodulator to the receiver each time one bit is demodulated, and the receiver samples the actual serial data using this clock. The CLKM communication rates ($1 / 16$ th and $1 / 32$ nd of the input frequency) cannot be employed.

A demodulation rate of 1200 bps is used in the case of sending the serial data to the SYNC detector.

The operation of the FSK demodulator is described using Fig. 3.7. The internal communication clock - either 16 times the receiver communication rate or 16 times 1200 bps - is first produced. The input signal to the RxF terminal is read in synchronization with this clock, and its rising edge is detected. The first rising edge detected is regarded as the start timing for one bit, and the internal communication clock counter is set to 1 . If the next rising edge is detected before the count of 13th clock, the serial output is set to the H level in synchronization with the 13th clock; if not detected it is set to the L level. The DSF (demodulated status flag) in the R64 (FSK status register) is set accordingly. At the same time, a clock signal is sent to the receiver to indicate the completion of one bit demodulation.

If more than one input signal rising edge is detected before the 13th clock, the CFF (carry first flag) in the R64 is set. Also, when the next input signal positive edge cannot be detected before the 21 st clock, the CSF (carry slow flag) of the R64 is set. The 21 st clock is regarded as the start timing for a temporary bit and the internal communication clock counter is set to 1 . Then the serial output is set to the L level in synchronization witht he 13 th clock, and at the same time a clock is sent to the receiver. At the 21 st clock the counter is again set to 1 . This cycle is repeated

Fiqure 3.6 FSK modulation

Figure 3.7 FSK demodulation
until the input signal positive edge is detected. When the positive edge is finally detected usual one bit process described above restarts. Although the serial output in the case of a temporary bit is treated as the L level within the demodulator, and the DSF of the R26 has the L level, the serial signal being sent to the receiver and the SYNC detector has the H level.

Fig. 3.8 illustrates the manner in which the phase alignment of the FSK-modulated signal is accomplished by the FSK demodulator. When demodulation starts from the serial signal mark (two wave-modulated signal $=\mathrm{H}$ level), it tends to be 180° out-of-phase, as shown in Fig. 3.8 (1) $\&(2)$. As is apparent from the figure, there is a possibility for one bit of space (one wave-modulated signal $=\mathrm{L}$ level) to be overlooked.

The polarity (H and L levels) inversion can be applied to the input signal from the RxF terminal to the demodulator. The positive or negative polarity can be specified from the host CPU, or according to the result from the internal polarity detection circuit the automatic polarity follow-up system functions.

The operation of this polarity detection circuit is described using Fig. 3.9. The input signal at the RxF terminal is loaded into the 12 -bit shift register according to the internal communication clock. Then the data are extracted from the register in synchronization witht he $1 \mathrm{st}, 5 \mathrm{th}, 6 \mathrm{th}, 7 \mathrm{th}$, 8 th and 12 th clocks (counting from the oldest data stage of the register). If the data synchronized with the 5 th and 6 th clocks only have different values from other data, the data before the 6 th clock are considered mark (two wave modulation), while the data after the 7 th clock are regarded as space (one wave modulation). If the space start position is known the direction of the input signal change at the start corresponds to the positive direction.

In Fig. 3.9 three types of input signals, each with a slightly different communication rate from the others, are given as an example. Polarity decision will be made for the input signal whose phase is opposite to that of the three input signals shown.

In the automatic polarity follow-up conducted according to the detected polarity the phase alignment is made in accordance with the timing of the mark-to-space transition detected during the polarity detection, and the internal communication clock counter is set to 1 .

In the case of the automatic polarity decision the requirements for the input signal duty ratio are considerably strict. To prevent the dropout of bits in phase alignment it is desirable that the recorded data header portion have a mixture of marks and spaces and that use be made of the algorithm that the polarity is fixed after repeated decisions.

 nentun

 internal communicalion clock

Figure 3.9 Polarity detection in FSK de modulation

3.2.4. Operation of the FSK modulator and demodulator

The operation of the FSK modulator and demodulator is controlled by the register R65. The status of the FSK demodulator is set in the register R64, and can be read out at any time. Fig. 3.10 shows the function of each register.

- RxFS (R64-b7) - READ-

Status flag that indicates the input level at the RxF terminal.

- \quad SS (R64 - b6) - READ -

Status flag that indicates the result of demodulation.
A temporary bit (see section 3.2.3.), when demodulated, is treated as space (L level).

- CSF (R64 - b5) - READ -

If the RxF input signal positive edge cannot be detected for a period equal to 21 clocks by the internal communication clock or $21 / 16$ th of a bit counting from the start of any one bit, 1 is set. This flag denotes that a signal with the communication rate slower than the prescribed demodulation rate may be input.

- CFF (R64 -- b4) - READ -

If more than one positive edge from the RxF input signal is detected during the period equal to 12 clocks by the internal communication clock or $12 / 16$ th of a bit counting from the start of any one bit, 1 is set. This flag indicates that a signal with the communication rate faster than the prescribed demodulation rate may be input.

- PS (R64 - b1) - READ -

The detection result of the $\mathrm{R} \times \mathrm{F}$ input signal polarity is set in this status flag.

- PDF (R65 - b0) - READ -

This flag is set when the polarity detection is made.

- ME (R65 - b7) - WRITE -

If 1 is already written the FSK modulator operates; if 0 is written its operation stops.

- \quad CFC (R65-b4) -WRITE -

If 1 is written 0 is set in the CSF and CFF.

- DE (R65 - b3) - WRITE -

If 1 is already written the FSK demodulator operates; if 0 is written its operation stops.

Figure 3.10 Register functions for FSK Madulator/Demodulator

- APD (R65 - b2) - WRITE -

If 0 is already written the automatic polarity follow-up function operates. If 1 is written, the input polarity is determined according to the subsequent P / N bit (see below) and demodulation is performed.

- $\mathrm{P} / \mathrm{N}(\mathrm{R} 65$ - b1) - WRITE -

Sets the input polarity when the automatic polarity follow-up function is not used.

- \quad PDFC (R65 - b0) - WRITE -

If 1 is written 0 is set in the PDF.
3.2.5. Effects of the initial clear Refer to section 3.3 \& 3.4.

3.3 Functions related to transmitting

3.3.1 FIFO-ITx and FIFO-Tx

The FIFO-ITx is a 4-byte transmitting buffer intended exclusively for the MIDI system realtime messages (F8)h \sim (FE)h. For details, refer to section 4.1: "MIDI clock controller and related functions".

The FIFO-Tx is a general-purpose 16 -byte transmitting buffer. If data is set in this buffer from the host CPU, the data will be sent to the transmitter in the set order. The flag showing the FIFO is not full and the flag showing the empty FIFO condition can be read out from the host CPU. If the FIFO-Tx becomes empty because of the read-out by the transmitter an interrupt signal will be sent to the IRQ controller.

The transmitter gives priority to the data (if present) of the FIFO-ITx; therefore, the data in this buffer will first be read out and transmitted.

3.3.2. Idle detector

Detects the long absence of transmit operation.
If there is no transmission for approximately 80 msec (equal to the time of six counts of the signal obtained by dividing the input clock at the CLKF terminal by 2^{13} : if CLKF $=614.4 \mathrm{KHz}$, then clock interval $=13.4 \mathrm{msec}$, time $=66.7-80.1 \mathrm{msec}$), the flag is set, and the active sense message (FE)h is set in the FIFO-ITx if already acknowledged by the host CPU. The same operation will be repeated every sixth counts. For the acknowledgment of the setting of the (FE)h in the FIFO-ITx, see section 4.1 : "MIDI clock controller and related functions".

3.3.3. Transmitter and FSK modulator

Refer to section 3.1 for the transmitter, and section 3.2 for the FSK modulator.
An auxiliary function of the transmitter is the BREAK character transmit function. If instructed by the host CPU the transmitter goes to the L level and will maintain that level until released. In this case the internal transmit operation of the transmitter continues without interruption.

3.3.4. Register operation

The transmission-related functions are controlled by the registers R54, R55 and R56. Fig. 3.11 shows the function of each register.

- TxEMP (R54 - b7) - READ -

Status flag that indicates the FIFO-Tx is empty.

- TxRDY (R54-b6) - READ -

Status flag that indicates the FIFO-Tx is not full and hence data can be set.
If this flag is 0 , additional data, if sent to FIFO-Tx, will be lost.

RS4 TSR	R	Fif0-Tx stalus			
b7 TXEMP	FiFO-Tx empty flag		0 : data exist	1	empty
be $\mathrm{T} \times$ RDY	FIFO-Tx ready flag		0 : FIFO-Tx full		ready
$\begin{aligned} & b 5 \\ & 5 \\ & 63 \end{aligned}$					
b2 $\mathrm{T} \times 1 \mathrm{DL}$	Tx idle detected fag		0:-	1	Tx idle
b1					
b0 TxBSY	Transmitler busy flag		0 : idle	1	busy
RSS TCR	'H1	FIF $\mathrm{S}_{\mathrm{j}} \mathrm{T} \times$ control			
b7 $\mathrm{T} \times \mathrm{C}$	clear FIFP-Tx \& Fifolitx		write 1 to clear FIFO-Tx \& FIFO-ITx		
$\begin{gathered} \text { bs } \\ \vdots \\ b 4 \end{gathered}$					
b3 BRKE	enable send break		0:-	1	set Tx
b2 TxIOLC	clear $7 \times$ idie flag		write 1 to clear		
$b 1$					
b0 $\quad \mathrm{T} \times \mathrm{E}$	enable Transmitter		0 : disable		enable
R56 TDR	W	FiFO-Tx data			
$\begin{aligned} & \mathrm{b} 7 \\ & \mathrm{~b} \\ & \mathrm{bO} \end{aligned}$		data to FIFO-Tx	8 bit data		

Figure 3.11 Register functions for Transmitter

- TxIDL (R54 - b2) - READ -

This flag is set each time non-transmit condition of approximately 80 msec (when CLKF $=$ 614.4 KHz) is detected by the idle detector.

- TxBSY (R54 - b0) - READ -

Status flag that indicates the transmitter is in transmit operation.

- TxC (R55 - b7) - WRITE -

Clears the contents of the FIFO-ITx and FIFO-Tx. The IRQ is not generated.

- BRKE (R55 - b3) - WRITE -

If 1 is written the transmitter serial output goes to the L level and stays there until 0 has been written. The transmitter internal operation continues during the L level period.

- TxLDLC (R55 - b2) - WRITE -

Clears the TxIDL flag.

- TxE (R55 - b0) - WRITE -

Enables the transmitter operation. When its operation is inhibited by writing 0 a character now under transmission will be transmitted completely. Read-out of a new character from the FIFO-Tx and FIFO-ITx is inhibited.

- R56 - b7~b0 - WRITE -

Data written into this register is set in the FIFO-Tx.
3.3.5. Note on IRQ

If the FIFO-Tx becomes empty because of the read-out by the transmitter an interrupt signal is sent to the IRQ controller. This signal is cleared by the operation on the IRQ controller or if the TxEMP flag becomes zero.

3.3.6. Effects of initial clear

The initial clear of the hardware and software will cause the following operations to be made:

- The TxD and TxF terminal outputs go to the H level and the L level, respectively.
- The operation of the transmitter and FSK modulator is stopped and initialized.
- Idle counter starts its count from zero.
- Zeros are written into the registers.
- All flags other than the status flags are cleared.

3.4 Functions related to receiving

3.4.1. FIFO-Rx

The FIFO-Rx is a receiving buffer of 10 bits $\times 128$ words. Fig. 3.12 illustrates its configuration.

When the receiver receives one character of message the 8 -bit data and the 2 -bit error flag are set in the FIFO-Rx. If the data is read out by the host CPU the data in the FIFO-Rx is automatically forwarded. The error flag associated with the data to be read next can be read out by the status register RST (R34).

In the 4-bit length parity mode if any error is detected one word consisting of the 4-bit parity error flag 6 zeros is set in the FIFO-Rx following the 8 -bit data plus 2 -bit error flag.

The flag indicating that the FIFO has the data to be read out and the flag indicating that the FIFO under the full condition is provided with new data (i.e., overflow condition) can be read out by the host CPU. If the FIFO goes into the overflow state, the flag is set and at the same time the second oldest data (one word) is lost, the data that follows is forwarded and the latest data is set. Because of this, when the host CPU detects the framing error, parity error and overrun error, one word of data is abandoned, thereby guaranteeing the data thereafter.

If new data is set in the empty FIFO an interrupt signal is sent to the IRQ controller.

3.4.2. Break detector

Detector circuit for the BREAK condition.
When the receiver input signal has the L level for the period of two characters according to the reception mode and rate currently set, the flat is set and an interrupt signal is sent to the IRQ controller. The interrupt cannot be used at the same time with that from the off-line detector (see below).

3.4.3. Off-line detector

Detects the long absence of receive operation. If there is no parallel data output from the receiver for approximately 300 msec (equal to the time of 24 counts of the signal obtained by dividing the input clock at the CLKF terminal by 2^{13} : if CLKF $=614.4 \mathrm{KHz}$, then clock interval $=$ 13.4 msec , time $=308.2-321.6 \mathrm{msec}$), the flag is set and an interrupt signal is sent to the IRQ controller. The interrupt cannot be used at the same time with that from the break detector (see above).

3.4.4. MIDI clock filter

Circuit to eliminate the MIDI clock message (F8)h from the received data. If this flag is enabled by the host CPU, the setting of data in the FIFO-Rx is inhibited only when the (F8)h is received without error.

Figure $3.12 \mathrm{FIFO}-\mathrm{R} \times$ structure

3.4.5. Address hunter

Circuit to eliminate the special format data train referred to as the MIDI system exclusive message. If enabled, by the host CPU, the setting of the unnecessary system exclusive message data received without error into the FIFO-Rx is inhibited.

For details, see section 4.4 "Address hunter".

3.4.6. Receiver and FSK demodulator

See section 3.1 for the receiver, and section 3.2 for the FSK demodulator.

3.4.7. Register operations

Transmission-related functions are controlled by the registers R34 and R35. Refer to section 4.4 for address hunter controls.

- RxRDY (R34 - b7) - READ -

Status flag that shows the FIFO-Rx has the data to be read out.

- RxOV (R34 - b6) - READ -

Flag that shows the overflow has occurred in the FIFO-Rx.

- RxF (R34 - b5) - READ -

Framing error flag for the next data to be read out.

- BRK (R34 - b3) - READ -

Flag that indicates the BREAK condition has been detected.

R34 RSR	R FIFO-R× status		
b7 $R \times R D Y$	FIFO-Rx ready flag	0:empiy	1:data ready
b6 R×0Y	Fif0-8x over flow detected flag	0:-	1: overflow delected
b5 $\mathrm{R} \times \mathrm{F}$	framing error flag	0:-	1: framing error detected
D4 Rxp	parity error flag	0:-	1 : parity error detected
b3 BRK	break detected flag	0:-	1 : break detected
b2 R×0L	off-line detected flag	0 :-	1:off-line detected
b1 AHBSY	Address-hunter busy nag	0: iddress-hunter idle	1 : Address-hunter busy
DO $\mathrm{R} \times \mathrm{BSY}$	Receiver busy nas	0 : Receiver Idle	1:Receiver Dusy
R3S RCR	W^{W} FIF 0-Rx control		
$t 7 \mathrm{R} \times \mathrm{C}$	clear FIFO-Rx	Write 1 to clear FIFO-Rx	
b6 RxOYC	clear overflow delected flag	Write ! to clear flag	
b5			-
b4 FLTE	enable MIDI-clock Filter	0 : disable	1 : enable
b3 BLKC	clear break detected flag	write 1 ti clear fiag	
b2 R×OLC	clear off-line detectes flag	write 1 to clear nag.	
bl AHE	enable Address-hunter	0 : disatle	1 : enable
b0 $R \times E$	enable Receiver	0 : disable	1 : enable
R36 RDR	R FIFO-Rx data		
$\begin{aligned} & b 7 \\ & b \\ & b 0 \end{aligned}$	get data from FIFO-Rx \& increment FIFO-Rx	8 bit data	

Figure 3.13 Register functiong for Receiver

- $\mathrm{RxOL}(\mathrm{R} 34-\mathrm{b} 2) \quad$ - READ -

Flag that indicates the off-line condition has been detected.

- AHBSY (R34 - b1) - READ -

Status flag that shows the operating address hunter detects the MIDI system exclusive message and is processing it.

- RxBSY (R34 - b0) - READ -

Status flag that shows the receiver receives the serial data and is converting this data to the parallel equivalent.

- RxC (R35 - b7) - WRITE Clears the contents of the FIFO-Rx.
- RxOVC (R35 - b6) - WRITE Clears the RxOL flag.
- FLTE (R35 - b4) - WRITE Enables the operation of the MIDI clock filter.
- BLKC (R35 - b3) - WRITE Clears the BLK flag.
- $\quad \mathrm{RxOLC}(\mathrm{R} 35-\mathrm{b} 2) \quad$ - WRITE Clears the RxOL flag.
- AHE (R35 - b1)

Enables the operation of the address hunter.

- RxE (R35-b0)

Enables the operation of the receiver.

- R36-b7~b0

Reads the first (oldest) data of the FIFO-Rx. The data in the FIFO is automatically forwarded when the read-out is performed.

3.4.8. Note on IRQ

If the empty FIFO-Rx receives the parallel data from the receiver, an interrupt signal is sent to the IRQ controller. This interrupt is cleared by operating upon the IRQ controller, or when the FIFO-Rx becomes empty by the read-out of data.

The interrupt signal from the break detector and the off-line detector to the IRQ controller reflects the contents of the BRK and RxOL flags. This signal is cleared by operating upon the IRQ controller, or cleared simultaneously if the BRK and RxOL flags are cleared. Conversely, the operation of the IRQ controller causes the BRK and RxOL flags to be cleared.

The simultaneous use of both IRQs from the host CPU is impossible.
3.4.9. Effects of the initial clear

The initial clear of the hardware and software will cause the following operations to be made:

- The operation of the receiver and FSK demodulator is stopped and both are initialized.
- The count of the break detector and off-line detector starts at zero.
- Registers are written with zeros.
- Flags other than status flags are cleared.

4. MIDI SERVICE FUNCTIONS

4.1 MIDI clock controller and related functions

4.1.1. Purpose of the MIDI clock controller

The MIDI system real-time message includes the clock message (MIDI clock) used for synchronized performance of a plurality of instruments (e.g., sequencer and rhythm machine), the start message, the stop message and the continue (continuous start) message. The MIDI clock is transmitted every $1 / 24$ th of a quarter note (ninety-sixth note) and each instrument measures the time based upon this clock for the performance.

The MIDI clock controller of the YM3523 is provided to attain the following purposes with respect to the messages: attain the following purposes with respect to the messages:

- Automatic control of the counters and SYNC output circuits synchronized with the reception of the clock message and the tape SYNC signal, or the clock message transmission.
- The speedup of the CPU response to the reception of the system real-time message.
- The priority transmission of the system real-time message and automatic transmission of some of the system real-time message.
- The generation of the internal MIDI clock triggered by the reception of the clock message, the tape SYNC signal, the internal timer, or by the host CPU operation, and subsequent IRQ generation.
- The concurrent control of the counters, the output circuit and the message transmission, all of which synchronized with the internal MIDI clock.
- The guarantee of the process sequence of the clock message and other system real-time messages when the reception of the clock message is used as a trigger for the internal MIDI clock.

4.1.2. SYNC detector

Functional module that detects the SYNC signal from the tape SYNC input signal and supplies this detected signal as one of the MIDI clock sources.

When zero is already set in the register $\mathrm{R} 25-\mathrm{b} 5$ (Receiver input controller) and the input signal to the RxD terminal is already fed to the receiver, this module operates using the serial output of the FSK demodulator as its input. If, during operation, the module detects the positive edge of its input level, the FIFO-IRx is informed of the generation of the MIDI clock. Since the FSK demodulator operates at a fixed demodulation rate of 1200 bps this positive edge detection is equivalent to the detection of the timing of the RxD terminal input signal variation from 1200 Hz to 2400 Hz . If the transfer rate error is detected the serial output signal of the FSK demodulator is set to the H level; thus, at the instant that the input signal is disconnected from the RxD terminal there is the possibility of the MIDI clock generation.

Figure 4.1 sirveture of FIfO-18x

4.1.3. MIDI clock timer

An exclusive timer - one of the internal MIDI clock sources.
A pulse with an interval of eight $\mu \mathrm{sec}$ is counted by the 14 -bit counter. This pulse signal is produced by dividing the CLKM by four or eight, depending upon the setting of the register R66-bl (CLKM frequency select). Since the count is made only once every 16 TCLK, the 16 TCLK becomes the unit of count in case the 4 TCLKM or 8 TCLKM in longer than the 16 TCLK.

When the counter reaches a count of zero reloading of the count value is performed. With the timing of the loading or reloading of the count value the FIFO-IRx is informed of the MIDI clock generation.

If a value of less than or equal to one is loaded into the counter its operation is not guaranteed.

4.1.4. MIDI message detector

Functional block that monitors the reception data of the receiver and supplies the reception of the clock message (F8)h as one of the internal MIDI clock sources, and detects the reception of (F9) h~ (FD)h in the system real-time messages (F9)h to (FF)h.

Message detection is performed only for the data received normally, that is, received without parity and framing errors, etc. The detection results will be sent to the FIFO-IRx.

4.1.5. FIFO-IRx

4-byte FIFO that is provided to guarantee the process sequence of the internal MIDI clock especially that is generated on the basis of the reception of the clock message (F 8)h by the receiver - and the system real-time messages (F9)h to (FD)h.

The clock message (F8)h is set in this FIFO by the MIDI clock generation signal from one of the following blocks (which is selected by the host CPU): the SYNC detector, the MIDI clock timer and the MIDI message detector. Also, if the MIDI message detector enabled by the host CPU detects the reception of the other system real-time messages (F9)h~ (FD)h, the detected message is set in the FIFO. If new data is tried to be set in this FIFO which is already full of 4-byte data, the new data will be lost.

The oldest data stored in the FIFO can be read out by the host CPU. Unlike the usual FIFO, the read-out of the oldest data is performed without extracting it. Its extraction is made by the other operation of the host CPU. If the oldest data becomes the clock message (F 8)h, it is automatically extracted, and the internal MIDI clock signal is sent to the MIDI message distributor. With this automatic process of the MIDI clock is done, and also of the MIDI clock that is processing other system real-time messages received is suspended.

When the FIFO's oldest data becomes the clock message (F8)h, an interrupt signal called the MIDI clock detect is sent to the IRQ controller; or when the oldest data becomes other system real-time messages (F9)h \sim (FD)h, an interrupt signal called the MIDI real-time message detect is sent to the IRQ controller.

4.1.6. MIDI message distributor

Distributor for the internal MIDI clock and other system real-time messages.
The counters and output circuits that receive the messages (FA)h, (FB)h and (FC)h perform the necessary operation, that is, start, stop and initialization, according to the meanings of the messages (start, stop and continue). The messages that are sent to the FIFO-ITx are transmitted by the transmitter.

According to the signal from the FIFO-IRx or the register operation by the host CPU (register operation is selectable from the host CPU), the internal MIDI clock is sent simultaneously to the FIFO-ITx, sequencer, CLICK counter and SYNC controller. Other real-time messages are sent to one or more designated functional blocks throught the register operation by the host CPU.

4.1.7. FIFO-ITx

4-byte transmitting buffer intended exclusively for the system real-time messages (F8)h ~ (FE)h.

The messages (F8)h ~ (FE)h sent from the MIDI message distributor or the idle detector (see section 3.3) are extracted and transmitted on a single byte basis while the transmitter is enabled.

The setting of the clock message (F8)h and active sense message (FE)h is enabled/disabled through the register operation by the host CPU. For the other system real-time messages (F9)h ~ (FD)h the FIFO-ITx only can be removed from designation by operating the MIDI message distributor. Therefore, the operation of the FIFO-ITx can be fully controlled from the host CPU.

4.1.8. Register operations

Registers R86 and R87 control the MIDI clock timer, and registers R14 through R17, control other MIDI clock controller-related functions.

Fig. 4.2 shows the function of each register.

- R87-b5~R86 - b0 - WRITE -

Sets the load value for the MIDI clock timer. The MIDI clock timer "down-counts" the value set in the internal counter every unit of time. When a count of zero is reached the value set in this register is reloaded in the counter. At the time of reloading the MIDI clock generation signal is sent to the FIFO-IRx.

For the unit of time, $1 / 4$ th or $1 / 8$ th of the CLKM, which is dependent upon the setting of the R66-bl (CLKM frequency select) and is $8 \mu \mathrm{sec}$ for the preset CLKM, or $1 / 16$ th of the CLK will be selected and whichever is longer is taken.

The value set in the register can settle as the reload value when data is written into R87. The reload value during the writing into R86 and R87 is equal to the value before R86 is rewritten. This prevents loading irregular values during the change of the reload value setting.

- LD (R87 - b7) - WRITE -

If 1 is written into this bit reloading will be performed within 32 TCLK, regardless of the present count value of the MIDI clock timer. The MIDI clock generation signal is also sent to the FIFO-IRx.

* In the case of the repeated access to the registers R86 and R87 it is necessary that the same register be accessed with the interval equal to 16 TCLK plus 8 TCLKM.
- ASE (R14 - b5) - WRITE -

Setting of the active sense message (FE)h from the idle detector in the FIFO-ITx is enabled/ disabled.

- MCE (R14 - b4) - WRITE -

Setting of the clock message (F8)h from the MIDI message distributor in the FIFO-ITx is enabled/disabled.

- CDE (R14 - b3) - WRITE -

Setting of the system real-time messages (F9)h \sim (FD)h from the MIDI message detector in the FIFO-IRx is enabled/disabled.

- MCDS (R14 - b2) - WRITE -

Determines whether the generation of the internal MIDI clock is performed by the internal MIDI clock from the FIFO-IRx or by the operation of the register R15 by the host CPU.

- MCFS (R14 - b1 ~ b0) - WRITE -

Determines where the request comes from for setting the clock message (F8)h in the FIFOIRx: the MIDI message detector, SYNC detector or MIDI clock timer.

- R15-b7~ b3 -- WRITE -

Designates the destinations (blocks) to which messages (F9)h \sim (FD)h are to be sent. The clock message (F 8)h is always sent to all blocks.

- R15-b2 ~ b0 - WRITE -

If this register is written, the message comprising its three bits plus five bits of 1 s are sent to the blocks designated by b7 $\sim \mathrm{b} 3$. The MIDI clock (F 8)h, however, is sent to all blocks. This MIDI clock (F 8) h is sent with the timing of register write or with the timing of the internal MIDI clock sent from the FIFO-Rx, depending upon the condition of the MCDS (R14-b2).

- R16-b7 ~ b0 - READ -

Reads the oldest data from the FIFO-IRx. The data read is not lost. (00)h has been set in this register when the FIFO is empty.

R86 MTRL	W	MIDI-clock Timer value (L)	
b? bO	lower 8 bit data	data (unit : 8 msec. IRQ occurs when data is loaded.)	

R87 MTRH	W	MIDI-clock Timer value (H)	
b. 2 D	imediate load request		write 1 to load value (data is loaded while 32 CL.K passed.)
b6			
bs		er 6 bit data	data (unit : $8 \times 256 \mathrm{msec}$.
$* \operatorname{cou}$ * 16 exc $* 00$	$\begin{aligned} & 1 \text { uni } \\ & \left(\begin{array}{l} 4 \\ 8 \\ 1 \\ \text { cik } \\ \text { pe fo } \\ 0000 \end{array}\right. \end{aligned}$	is; CLKM in $R 66-b 1=0$ CLKM $=0$ CLKM in REG- $61=1$ CLKM $=1$ TCIK TICLKM is needed to zecess accessing R84 then R85, or 00000000 b or (00 0000 000	4 TCLKM 1 1oTCLK 8TCLKM>16TCLK ister of R8d~R87 continuously, hen Re7. 01 ob is inhibited.

Figure 4.2 (1) Regigter functions for MIDI-clock Timer

R15 DCR	H_{1} Hill real-time message request	
b7 7x	lerget block of message write 1 to send message, but clock ($\mathrm{F} \theta$) h is always sent to alt blocks.	FIFO-17x
b6 SYIIC		SYNC Controller
b5 CC		Click Counter
1.4 PC		Flay-back Couriter
b3 RC		Recording Counter
$\begin{gathered} \mathrm{b2} \\ 5 \\ 60 \end{gathered}$	contents of message	```000:(f8)h - clock 001:(F9)h 010:(FA)h - stari 011:(fB)h - stop 100:(FC)h - continue 101:(FD)h 110: (inhibited) 111: (inhibited)```

R16 DSR	R	FIFO-1R× Jald	
bl b bo	FIFO-IRx data		FIFO-IRx data (0 is set while empty)

R17 DMR	W	FIFO-IR \times control	
17 1 61			
bO CL.K	Fif0-IRx incremient clock		Write 1 to increment FIFO-IRx

figure 4.2 (2) Register functions for MIDI-clock Controller

- $\operatorname{CLK}($ R 7 - b0) - WRITE -

If 1 is written into this bit an increment clock is sent to the FIFO-IRx, causing the oldest data to be lost.

* In the case of successive access to registers R14 through R17, inclusive, an interval of 16TCLK is necessary between each access.

4.1.9. Note on IRQ

If the receiver receives the system real-time messages (F9)h \sim (FD)h without parity and framing errors, this data is set in the FIFO-IRx via the MIDI message detector. If the FIFO-IRx has been empty the messages (F9)h \sim (FD)h can be regarded as its oldest data and hence the MIDI message detect interrupt is sent to the IRQ controller. This interrupt signal can be cleared only by the IRQ controller, independent of the increment of the FIFO-IRx. (If the IRQ is cleared the FIFO-IRx is not incremented and vice versa.) When, after the IRQ is cleared, the FIFO-IRx is incremented to cause its oldest data to become the (F9)h \sim (FD)h, an interrupt signal is sent to the IRQ controller.

According to the register setting by the host CPU, when the receiver receives the clock message (F8)h without error, the SYNC detector detects the SYNC signal of the tape SYNC input to the RxF terminal, or the MIDI clock timer detects the elapse of the prescribed time, the (F8)h is set in the FIFO-IRx. And, if the FIFO-IRx has been empty its oldest data can be considered the (F8)h and hence the MIDI clock detect interrupt signal is sent to the IRQ controller. At the same time the FIFO-IRx is incremented and becomes empty again. If the (F 8) h is set in the FIFO-IRx under no empty condition the FIFO-IRx is incremented until the oldest data becomes the (F8)h and an interrupt signal is issued.

The simultaneous use of the MIDI clock detect interrupt and the CLICK counter interrupt is inhibited.

4.1.10. Effects of the initial

The initial clear of the hardware and software will cause the following operations to be made:

- Registers are written with zeros.
- FIFO-IRx is cleared.
- Interrupt signals are cleared.
- The value of the MIDI clock timer is not guaranteed.

4.2 Sequencer

4.2.1. Purpose of the sequencer

The two counters in the sequencer, the recording counter and the playback counter, are provided, as their names imply, to record and reproduce the MIDI information, etc. The record and reproduce (playback) here mean that the generation of a series of events is recorded with respect to timing and is reproduced without destroying the relative time relationship.

The two counters operate in synchronization with the internal MIDI clock; however, since the accuracy of the MIDI clock depends upon the ninety-sixth note, there is a tendency for the accuracy to become somewhat lower at very fast temps. To cope with this situation the MIDI clock interpolator is provided in which the count clock is generated at every $1 / n$-th point of the interval between any two successive internal MIDI clocks, thereby improving accuracy.

4.2.2. MIDI clock interpolator

The MIDI clock interpolator measures the generation interval of the internal MIDI clock originated from the MIDI message distributor, generates its count clock at $1 / \mathrm{n}$-th of the measured interval and provides the recording and playback counters with the count clock generated. The integer (n) is referred to as the interpolation rate (Fig. 4.3 (a)).

The count clock generation interval is determined by counting the interval obtained by dividing the unit clock (CLK divided by 16), which equals to the interval between any MIDI clock and the next MIDI clock, by the interpolation rate. The resultant interval is further used until the next MIDI clock is reached. At the same time, the next count clock generation interval is measured. Therefore, if the MIDI clock generation interval varies or if the interpolation rate is changed, the count clock generation interval can follow this variation with a lag of one MIDI clock. In order to maintain the number of count clocks between the MIDI clocks the count clock generation higher than the interpolation rate is inhibited. Also, if the next MIDI clock generates before the interpolation rate is reached, a series of count clocks will generate to make up for a deficiency (Fig. 4.3 (b), (c)).

The recording and playback counters start and stop their operations according to the start (FA)h, stop (FB)h and continue (FC)h messages. If, however, the start and stop of the count is simply performed using the count clock described above, some problem is encountered. At the second and third stages in Fig. 4.3 (d) are given the count clocks with interpolation rates of 1 and 3, based upon the above procedure. Under the generating condition of the MIDI clock and the control messages as shown at the first stage, the count clock indicated with a circle is to be count. Then, the measured times interpolated using two interpolation rates are 2 for 2 nd stage, $7 / 3$ for 3 rd stage, respectively during the first start-stop period and 2 for 2 nd stage, $4 / 3$ for 3 rd stage, respectively during the next continue-stop period. This implies that if instruments with different interpolation rates are synchronized for recording and reproduction, repeated start/stop operation could bring poor synchronization. To cope with this, the start and stop of the count clock generation is done on the basis of the MIDI clock unit in accordance with each control message. And a function is added in which if the control message of stop (FB) h is sent count clocks are generated in a lump that are to be generated before the next MIDI clock. With this technique the counted value is fixed at the interpolation rate times the MIDI clock, thereby maintaining synchronization (Fig. 4.3 (d) - fourth stage). The control messages of start, stop and continue can be independently sent to the recording and playback counters; thus, the MIDI clock interpolator provides its count clock output separately to each counter, permitting independent operation.
(a) MiDt-clock

count clock

in $\times 1$
in $\times 2$
in $\times 3$
in $\times 4$
(b) MIDI-clock
timing of $\times 3$
count clock in $\times 3$
(c) MIDI-clock
interpalation rate
timing of $\times N$
count clock in $\times N$
(d)

MIDI-clock
MIDI control message
count clock in $\times 1$
count clock in $\times 3$
(o is marked
to counted clock)
count clock on $\times 3$

\qquad
111111
\qquad
111111111111

Figure 4.3 Interpolation of MIDI-clock

4.2.3. Recording counter.

8 -bit read-only counter.
When the start message (FA)h is received the count value is set to 0 , and the value increases one by one with the count clock from the MIDI clock interpolator. If the count clock is received at the count value of (FF)h the count value becomes 0 , sending an interrupt signal to the IRQ controller.

This counter, as a real-time clock on the basis of the MIDI clock, is intended for time management such as for event recording, with its higher-order digits supplemented by software.

If the count carry is made by the IRQ and the count value is read out with the IRQ of the host CPU masked, the count value could become zero immediately after masking the IRQ. This raises the possibility of time recognition by pre-carry higher-order digits plus post-carry lowerorder digits.

Also, the count value could become zero immediately after its read-out and the carry of the higher-order digits could be made before time recognition, raising the possibility of a pre-carry/ lower order-post-carry/higher order combination. For this reason caution should be used for the host CPU process algorithm.

4.2.4. Playback counter

15-bit programmable subtracting-counter. A 16-bit (including one sign bit) arrangement internally. This counter has the function that the host CPU-designated value can be added to the count value. If the count value becomes zero or negative an interrupt signal is issued to the IRQ controller. If the start message (FA)h is received the count value is set to zero. Also, the register operation by the host CPU can cause this count value to become zero. If the count value zero-setting and addition are simultaneously performed, the zero-setting operation precedes the addition.

In the case of the reproduction of the generation of a series of events recorded on a relative time basis, an event is processed by the IRQ from this counter, then the time elapsed to the next event is added to the count value. The count proceeds with negative value; thus, even if the first event takes time in processing the time elapsed to the next event is not changed.

4.2.5. Register operations

Registers R74 through R77, inclusive, control each function of the sequencer. Fig. 4.4 shows the function of each register.

- R 74 - b7 ~ b0 - READ -

Reads the present count value of the recording counter.

- R 76 - b7 ~ b0 and R77 - b6 ~b0 - READ -

The 15 -bit value set in this register is added to the count value of the playback counter through the operation of ADD (R75-b5).

- ADD (R75 - b5) - WRITE -

If 1 is set to this bit the 15 -bit value set in the $\mathrm{R} 66-\mathrm{R} 67$ is added to the count value of the playback counter.

R74 SRR	R	Recording counter current value	
b?	current yalue	data	
b0			

R.75 SER	W^{\prime}	Interpolator control	
b7 b b		-	
bS ADD	Play-back Counter addition request		write 1 to add
b4 CLR	Play-back Counter clear request		write 1 to clear
b3	interpolation rate		data --- (0000)b is inhibited
R7ó SPRL	ir	Play-back Counter valus (H)	
b7	lower 8 bit data to add		date

[^0]Figure 4.4 Register functions for Sequencer

- CLR (R75 - b4) - WRITE -

If 1 is set to this bit 0 is set to the count value of the playback counter.

- R75-63~b0 - WRITE -

Sets the interpolation rate of the MIDI clock interpolator.

* In the case of the successive access to registers R74 through R77, inclusive, an interval of 16 TCLK is required between each access. This interval is not required when an access is first made to R76, then to R77.

4.2.6. Note on the IRQ

When the recording counter value changes from (FF)h to (00)h, an interrupt signal is sent to the IRQ controller. This signal is always cleared by the IRQ controller.

When the playback counter value is zero or negative an interrupt signal is sent to the IRQ controller. This signal is cleared by the IRQ controller only when the count value is positive.

4.2.7. Effects of the initial clear

The initial clear of the hardware and software will cause the following operations to be made:

- The values of the recording and playback counters become zero.
- Registers are written with zeros.
- The interpolation rate of the MIDI clock interpolator is not guaranteed.

4.3 SYNC controller and CLICK counter

4.3.1. SYNC controller

When the MIDI clock distributor generates the internal MIDI clock the output at the SYNC terminal is held at the H-level for 2 msec (equals to TCLKM $\times 2^{10}$ or TCLKM $\times 2^{11}$ depending upon the contents of the R66-b1: CLKM frequency select). If the internal MIDI clock is again generated at the prescribed time the output is set to the L-level after re-measuring the $2-\mathrm{msec}$ period.

The operation of the SYNC controller is conducted from the receipt of the start (FA)h or continue (FC)h message from the MIDI clock distributor to the receipt of the stop (FB)h message.

This SYNC output signal is utilized as the input signal to the FSK modulator when the transmitter output is available at the TxD terminal. The TxF terminal can output the tape SYNC signal.

4.3.2. CLICK counter

7-bit internal MIDI clock counter provided to know the timing corresponding to the note value of a quarter note, etc., from the MIDI clock that indicates the note value of a ninety-sixth note. When this counter reaches a count of zero the count value is reloaded, an interrupt signal is sent to the IRQ controller and the output level at the CLICK terminal is held at the H-level for 2 msec (equals to TCLKM $\times 2{ }^{10}$ or TCLKM $\times 2^{11}$ depending on the contents of the R66-bl: CLKM frequency select). If the count value again reaches zero when the output is still at the H -level, this output is set to the L-level after the remeasurement of 2 msec .

The counting operation is conducted from the receipt of the start (FA)h or continue (FC)h message from the MIDI clock distributor to the receipt of the stop (FB)h message. At the first MIDI clock after the receipt of the start (FA)h message the reloading of the count value, the output of the CLICK pulse and the generation of an interrupt signal. When the counter is loaded with a value by the host CPU operation the output of the CLICK pulse and the generation of an interrupt signal is performed. In this case the interrupt signal can be cleared after the elapse of 32 TCLKM from the writing of the value.

4.3.3. Register operations

Registers R66 and R67 control the operation of the SYNC controller and the CLICK counter. Fig. 4.5 shows the function of each register.

- CLKM (R66 - b1) - WRITE -

Sets the frequency of the input clock at the CLKM pin. According to this setting, the count number of the CLKM, which determines the output pulse width at the SYNC and CLICK terminals, and the CLKM dividing ratio by which the count clock for the MIDI clock timer and general-purpose timer is produced are determined.

- OUTE (R66 - b0) - WRITE -

The pulse output to the CLICK terminal is enabled/disabled.

- LD (R67 - b7) - WRITE -

If 1 is written into this bit the simultaneously-written value $\mathrm{b} 6-\mathrm{b} 0$ is loaded into the CLICK counter, providing the output of the CLICK pulse and the generation of an interrupt signal. The writing of 1 into this bit is inhibited when the value is 1 .

- R67 - b6 ~ b0 - WRITE -

Sets the count value for the CLICK counter load and reload. The operation is not guaranteed when 0 is written.

* Repeated access to register R67 requires an interval of 16 TCLK between each access.

Figure 4.5 Register functions for SYNC Controller \& Click Counter

4.4 Address hunter

4.4.1. System exclusive message

In the MIDI specification the system exclusive message for mass data transfer with unspecified formats is defined. Fig. 4.6 illustrates the message format. The (F0)h and the succeeding arbitrarylength data (00) h $\sim(7 F) h$ compose one system exclusive message. The system real-time messages (F8)h \sim (FF)h are sometime inserted into this message.

One byte next to the (F0)h is called the manufacturers ID code which is a registration code for a manufacturer using the MIDI standard. The MIDI-related equipment must accept only the system exclusive message using the ID code of a manufacturer who produced that equipment, and the mass data transfer using the manufacturer exclusive format can be made.

The manufacturer ID code is followed by a one-byte code tentatively called the device ID code which in the MIDI specification is intended for arbitrary data. If a certain manufacturer is producing several types of equipment in compliance with the MIDI. Each type is provided with an exclusive ID code. This device ID code is defined assuming the case in which only necessary or receivable information is to be processed.

4.4.2 Address hunter functions

When receiving the aforementioned system exclusive message the address hunter checks the manufacturer ID code and, if necessary, the device ID code, and prevents unnecessary data from being loaded into the FIFO-Rx for the purpose of reducing the host CPU processing.

Usually, the data received by the receiver is set in the FIFO-Rx via the MIDI clock filter and the address hunter. If the address hunter is enabled, and the (F 0) h data is sent from the receiver to the address hunter, the BUSY flag is first set and this data is evacuated without being set in the FIFO-Rx. Next, when the data $(00) h \sim(7 F) h$ is received this is also evacuated (not set in the FIFO-Rx) as it is the manufacturer ID code. In case the operation mode requires the device ID code checking additional one-byte data (99) $\mathrm{h} \sim(7 \mathrm{~F}) \mathrm{h}$ is also evacuated. Upon completion of the evacuation of the necessary ID code(s) comparison is started between the necessary ID code and the registered one (pre-stored in the register by the host CPU).

If accorded, the evacuated (F0)h and ID code(s) are set in the FIFO-Rx. This completes internally the operation of the address hunter and all data thereafter are set in the FIFO-Rx. The BUSY flag still remains set.

If not accorded, the evacuated (F0)h and the ID code(s) and following data received while BUSY flag is set are abandoned without being set in the FIFO-Rx.

If the data (80)h \sim (F7)h is received when the BUSY flag is being set, the flag is cleared and the data received is set in the FIFO-Rx. However, if the data is (F0)h the process is repeated by first setting the BUSY flag.

The data (F8)h \sim (FF)h is regarded as the insertion of the system real-time message and always set to the FIFO-Rx. The data with the generation of parity and framing errors are all set in the FIFO-Rx and are not subject to the ID check and the start/stop check for the system exclusive message. These data received during the period from the normal (F0)h reception to the ID code check replace the evacuated data in order in the FIFO-Rx.

Figure 4.6 Format of System Exclusive message

4.4.3. Register operations

Registers R26 and R27 set the operation mode of the address hunter. Fig. 4.7 shows the function of each register. Since registers R34 and R35 also have the operation control bit for the address hunter, and hence described again.

- IDCL (R27 - b7) - WRITE -

Determines whether the device ID code is to be checked.

- R26 - b6 ~ b0 - WRITE -

Registers the manufacturer ID code.

- BRDE (R27 - b7) - WRITE -

If 1 is set to this bit the (7 F) h can be regarded as the device ID code in addition to the registered ID code, and the data that follows is set in the FIFO-Rx.

- R27 - b6 ~ b0 - WRITE -

Registers the device ID code.

- AHBSY (R34-b1) - READ -

The BUSY flag for the address hunter.

- AHE (R35 - b1) - WRITE -

The operation of the address hunter is enabled/disabled.

figure 4.7 Register functions for Address-hunter

4.4.4. Effects of the initial clear

The initial clear of the hardware and software will cause the following operations to be made:

- Registers are written with zeros
- BUSY flag is reset.

4.5 Utilization for other than MIDI services

The functional blocks provided for the MIDI service can be utilized for systems not related to the MIDI, such as given below.

- Addition of a general-purpose timer

The MIDI clock detect interrupt can simply be used as a timer interrupt by specifying the MIDI clock timer as the internal MIDI clock source.

- Long interval pulse output circuit

A 2-msec width pulse output is available at a fixed time interval at the SYNC and CLICK terminals by specifying the MIDI clock timer as the internal MIDI clock source and sending the start message (FA)h to the SYNC controller and the CLICK counter.

Also, using the mode in which the internal MIDI clock is generated by the host CPU operation a pulse output circuits is realized which automatically provides $2-\mathrm{msec}$ width pulses by a single access.

- Use of the address hunter

The address hunter could be used for specifications other than the MIDI by altering the format.

- Real-time clock

The real-time clock can readily be implemented by operating the recording counter, with the MIDI clock timer used as the internal clock source.

- High-speed timer

Using the playback counter makes possible to a certain extent the processing of short interval which software cannot cope with.

5. OTHER FUNCTIONS

5.1 General-purpose timer

5.1.1. Function

Independent 14-bit timer
A pulse signal with an interval of 8 msec , which depending upon the R66-b1 (CLKM frequency select) is $1 / 4$-th or $1 / 8$-th of the CLKM, is counted with a 14 -bit counter. Since the count is made only once every 16 TCLK, if 16 TCLK is longer than 4 TCLKM or 8 TCLKM the count unit is 16 TCLK.

When the counter reaches zero the reloading of the count value is performed and an interrupt signal is sent to the IRQ controller. With only the count value loading there is no generation of an interrupt signal.

If a value 0 or 1 is loaded into the counter its operation is not guaranteed.

5.1.2. Register operations

Registers R84 and R85 control the general-purpose timer. Fig. 5.1 shows the function of each register.

- R85-b5 ~ R84-b0 - WRITE -

Sets the counter load value. With the standard CLKM input $8 \mu \mathrm{sec}$ is the unit.

- LD (R85-b7) - WRITE -

If 1 is set to this bit loading of the counter is made regardless of the present count value. No interrupt signal is generated.

* For the registers R84 and R85, if repeated access to the same register is necessary the interval between each access should be 16 TCLK plus 8 TCLKM.

5.1.3. Effects of the initial clear

The initial clear of the hardware and software will cause the following operation to be made:

- Registers are written with zeros; thus, the generation timing of an interrupt signal is not guaranteed.

R84 GTRL	W	General Timer value (L)	
b?	lower 8 bit data		data (unit : 8 msec . 1 RQ occurs when count becomes 0.)
R85 GTRH	W	General Timer value (H)	
b7 LD	imediate load request		write 1 to load value
b6			
b b bo	higher 6 bit data		data (unit : $8 \times 256 \mathrm{msec}$.)

R86 MTRL	W	MIDI-clock Timer yolue (L)	
b7	lower 8 bit data		data (unit : 8 msec . $\mathbb{R} \mathrm{Q}$ occurs when data is loaded.)

[^1]Figure 5.1 Register iunctiong for General Timer

5.2 I/O Controller

5.2.1. Functions

Controls the input/output of the eight I / O ports $\mathrm{P} 0 \sim \mathrm{P} 7$.
The input and output direction of each I/O port can be independently set. The port set as the input has a high impedance state; while the port set as the output has the H - or L-level, depending upon the output data set in the register.

The level at each I/O port terminal can be read into from the host CPU.

5.2.2. Register operations

Registers R94 through R96, control the I/O controller. Fig. 5.2 shows the function of each register.

- R94-b7~b0 - WRITE -

Sets the input and output direction of each I/O port.

- R95-b7~b0 - WRITE -

Output data for each I/O port is written.

- R96-b7~b0 - READ -

Level at each I/O port terminal is read out.
5.2.2. Effects of the initial clear

The initial clear of the hardware and software will cause the following operation to be made:

- Registers are written with zeros; thus, all I/O ports become high-impedance input ports.

R94 EDR	W	External l/a direction		
b? bo	direction of earch 1/0 port		0 : input	1:output
R95 EOR	W	External $1 / 0$ output data		
b7	output request of earch 1/0 port		0 : L level	1: H level
R96 EIR	R	External 1/0 input data		
b7 bo	pin level of earch $1 / 0$ port		0:L level	1: H level

Figure 5.2 Register functions for External 1/0 Controller

5.3 IRQ Controller

5.3.1. Functions

Receives ten kinds of interrupt signals from each functional block and controls the IRQ terminal output, the IRQ vector output and the release of interrupt signals.

The offline detector and the break detector have alternative interrupt signals; the interrupt signal from the CLICK counter and the MIDI clock detect interrupt signal are also alternative. These alternative interrupts and other interrupts are processed in the form of eight-level interrupts. The setting condition at each interrupt level, the clearing condition other than the operation of R03 and the effect of the R03 operation are given in Fig. 5.3.

IRQ level	Setting condition	Clear condition	Clear influence
IRQ-7 General Timer	When the timer reaches a count of zero.	-	
IRQ-6 FIFO-Tx empty	When the FIFO-Tx be- comes empty through the data extraction by the transmitter.	When the FIFO-Tx is load with data.	
IRQ-5 FIFO-Rx ready	When the empty FIFO- Rx is loaded with data.	When the FIFO-Rx becomes empty.	
IRQ-4 (1) Off-line detect	When the reception is not made for 300msec.	When 1 is written into RxOLC (R35-b2).	RxOL (R34-b2) is cleared.

* In addition, each IRQ is cleared by initial clear and by writing a value of 1 into the corresponding bit of R03.

Figure 5.3(a) Setting conditions, clearing conditions, clearing influence of each IRQ.

IRQ level	Setting condition	Clear condition	Clear influence
IRQ-4 (2) Break detect	When the receiver serial input is at the L-level for two-character period.	When 1 is written into the BRKC (R35-b3).	BRK (R34-b3) is cleared.
IRQ-3 Recording Counter	When the count value of the recording counter is zero.		
IRQ-2 Play-back Counter	When the count value of the playback counter is zero or negative.		
IRQ-1 (1) Click Counter	When its count value reaches zero in the case of being selected as the factor of the IRQ-1.		
IRQ-1 (2) MIDI-clock detect	When the oldest data of the FIFO-IRx becomes the (F8)h in the case of being selected as the factor of the IRQ-1.	-	

* In addition, each IRQ is cleared by initial clear and by writing a value of 1 into the corresponding bit of R03.

Figure 5.3(b) Setting conditions, clearing conditions, clearing influence of each IRQ.

5.3.2. Register operations

The IRQ controller is controlled by registers R00, R02, R03, R04, R05 and R06. Fig. 5.4 shows the function of each register.

- R00 - WRITE -

IRQ vectors are already set which will be sent to D7~D0 during the vector read. Like the other registers its contents can be read out by the host CPU. Thus, if the host CPU has no IRQ vector processing function the use of this register can eliminate the need for polling in the IRQ processing.

Of the interrupt signals enabled and active at present, the highest priority interrupt signal determines $b 4 \sim b 1$. If the enabled interrupt signals are not active, (1000)b is set. The vector offset values set in the R04 determine b7 ~b5, and b0 is always zero.

- R02 - READ -

The state of the interrupt signal at each level is already set.

- R03 - WRITE -

Clears the interrupt signal at each level independently.
The interrupt signals from the offline detector and the break detector, which are at the same level, are both cleared by this register. However, the interrupt signal from the CLICK counter and the MIDI clock detect interrupt signal from the FIFO-Rx, which are also at the same level, are subject to selection, i.e., only the presently selected signal is cleared. If the other interrupt is selected the status changes.

- R04-b7~b5 - WRITE -

Specifies the values b7~b5 of the IRQ vectors.

- C/T (R05-b3) - WRITE -

Selects between the interrupt signal from the CLICK counter and the MIDI clock detect interrupt signal from the FIFO-IRx. Since two flip-flops are used to retain the status of the interrupt signal separately, change of selection may bring status change.

- O/B (R05-b2) - WRITE -

Selects between the interrupt signal from the break detector and that from the offline detector. Since a signal flip-flop is used to retain the interrupt signal status, status remains unchanged if change of selection is made.

- VE (R05-b1) - WRITE -

The IRQ vector output is enabled/disabled.

- VM (R05-b0) - WRITE -

If 0 is already written this register satisfies the IRQ vector output request only if its own IRQ output is active; if 1 is already written the register always provide the output of the IRQ vector.

- R06-b7~b0 - WRITE -

The internal interrupt signal at each level is enabled/disabled. The IRQ output becomes active only when the enabled-level interrupt signal is issued. The RIQ vector is set according to the enabled interrupt signal which is active at present.

ROO IVR	$R \quad$ IRO vector	
$\begin{aligned} & 67 \\ & b \\ & 55 \end{aligned}$	IRQ yector offset	same to R04-b7~b5
$\begin{gathered} \text { b4 } \\ \text { bi } \end{gathered}$	IRQ vector appairs according to the active, highest priority, and enabled $\mathbb{R Q}$ priority: $\operatorname{RQ} \mathbf{- 7}>\operatorname{RRQ}-6>\ldots$	0000: IRQ-0 MIDI real-time message detected (F9~FD) 0001 : $\operatorname{RQQ}-1$ Click Counter / MIDI-clock detected 0010: IRQ-2 Play-back counter 0011 : $\mathbb{R Q}-3$ Recording counter $0100: \operatorname{IRQ}-4$ Off-line detected / break detected 0101 : $\mathbb{R Q}$-5 FIFO-Rx ready 0110 : IRQ-6 FIFO-Tx emply 0111 : $\mathbb{R Q}$-7 General Timer 1000: caused by external requests (other than MCS itself)
b0		siways 0

RO2 ISR	$R \quad \mathrm{IRQ}$ status	
b?	IRQ status 0 : inactive 1 : active	IRQ-7 General Timer
D6		IRQ-6 FIFO-Tx empty
D5		IRQ-5 FIFO-Rx ready
b4		IRQ-4 Off-line detected / Break detected
b3		RRO-3 Recording Counter
b2		IRQ-2 Play-back Counter
b1		IRO-1 Click Counter / MIDI-clock detected
bo		IRQ-0 MIDI real-time message detected (F9~FD)

R03 ICR	W IRQ clear request	
b7	IRQ clear request write 1 to clear earch IRQ	IRQ-7 General Tirner
b6		IRQ-6 FIF 0 -Tx empty
b5		IRQ-5 FIFO-Rx ready
b4		IRQ-4 Off-line detected / Break detected
b3		TRQ-3 Recording Counter
b2		IRQ-2 Play-back Counter
bl		IRQ-1 Click Counter / MIDI-clock detected
b0		IRQ-0 MIOI real-time message detected (F9~FD)

Figure 5.4 Register functions for IRQ Controller (1)

Figure 5.4 Register functions for IRQ Controller (2)

5.4 System control

5.4.1. Initial clear

The YM3523 initial clear (reset) is started by bringing the input at the $\overline{\mathrm{IC}}$ terminal to the Llevel or by writing a value of 1 to the bit 7 of the register R01. Because the initial clear operation is completed after a maximum of 32 TCLK it is necessary that returning the $\overline{\mathrm{IC}}$ terminal input to the L-level or writing a value of 0 to the $\mathrm{R} 01-\mathrm{b} 7$ be made after that period.

The contents of the initial clear operation are included in the description of each functional block. They are summarized in the following:

- Registers other than the R01 are written with zeros.
- Registers that clear flags and IRQs are written with ones.
- The MIDI message distributor sends the stop message (FB)h to each functional block.
- The count values of counters and timers become zeros.
- The reload values of counters and timers become zeros and their operations are not guaranteed.
- Transmitter and receiver stop their receive/transmit operation and are in the operation inhibit state.
- FSK-modulator and -demodulators stop modulation and demodulation and are in the operation inhibit state.
- The timing counters of the offline, break and idle detectors are initialized.

5.4.2. Register group number designation

The registers of the YM3523 are each designated by their address numbers and group numbers. For register access the address numbers are designated by the input level at the terminals $\mathrm{A} 2 \sim \mathrm{~A} 0$, but the group numbers must be pre-written into the $\mathrm{R} 01-\mathrm{b} 3 \sim \mathrm{~b} 0$.

The group numbers, once written, are valid until they are re-written. The registers with the same group number and the registers $\mathrm{R} 00 \sim \mathrm{R} 03$ can be successively accessed without the group number re-designation. (Registers R00 \sim R03 can be accessed with only their address numbers, regardless of group numbers.)

5.4.3. Register operations

Fig. 5.5 shows the function of the register R01.

- IC (R01-b7) - WRITE -

The YM3523 is initial cleared by first writing a value of 1 , and after the elapse of 32 TCLK, writing a value of 0 .

- R01-b3~b0 - WRITE -

Designates the register group numbers.

RO1	RGR	W	system control
b7	IC	initial clear request	
b6			
b4ite 1, wait 32 TCLK, write 0 to reset system			
b3			
bO			

Figure 55 Register functions for the system control

6. INTERFACES

6.1 Clock interface

6.1.1. CLK: System clock

As the system clock a clock frequency of not more than 4 MHz should be provided. Since only the minimum setup times for the H and L levels and the maximum transfer time between the two levels are required, an exact 50% duty factor is not required. A CPU with a 2 MHz clock rate can be used with the YM3523 by utilizing the CPU's 4 MHz signal generated within the circuit for producing the exact duty factor of the CPU clock.
6.1.2. CLKM and CLKF: Communication rate generating clock

These signals are sampled on the rising edge of the system clock (CLK). Thus, if the frequency exactly $1 / 2$-nd of the CLK is employed it must be synchronized with the CLK. If an asynchronous signal is provided to the CLK the setup time for the H and L levels should be selected to exceed one cycle of the CLK to ensure sampling.

6.2 CPU interface

6.2.1. Register read/write

Register read/write is performed by means of terminals D0 $\sim \mathrm{D} 7, \mathrm{~A} 0 \sim \mathrm{~A} 2, \overline{\mathrm{CS}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$.

$\mathrm{D} 0 \sim \mathrm{D} 7$	$:$	Three-state data bus
$\mathrm{A} 0 \sim \mathrm{~A} 2$	$:$	Designates the register address number
$\overline{\mathrm{CS}}$	$:$	Chip select signal to the YM3523
$\overline{\mathrm{RD}}$	$:$	Read request signal
$\overline{\mathrm{WR}}$	$:$	Write request signal

In the interior of the YM3523 $\overline{\mathrm{CS}}$ is OR'ed with $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$, and $\overline{\mathrm{CS} \cdot R D}$ and $\overline{\mathrm{CS} \cdot W R}$ signals activate its operation. Thus, the timing of $\overline{C S}$ and $\overline{R D}$ or of $\overline{C S}$ and $\overline{W R}$ can be freely decided. Since A0 ~ A2 must be setup before $\overline{\mathrm{CS}} \cdot \overline{\mathrm{R}} \overline{\mathrm{D}}$ or $\overline{\mathrm{CS}} \cdot \mathrm{WR}$, the timing is important if a CPU with the control lines such as R / W is used.

The read/write operation is performed in accordance with the system clock CLK of the YM3523; thus, the WAIT circuit, etc., must be used to ensure timing when the CPU clock and the CLK are asynchronous.

6.2.2. $\overline{\mathrm{IRQ}}$

The $\overline{\mathrm{IRQ}}$ pin has an open drain output and the wried OR circuit can be configured using a few peripheral LSIs.

When the $\overline{\mathrm{VR}}$ pin is made active, the contents of the register R 00 (as an IRQ vector) are output to D0 ~ D7. According to the setting of the internal registers (R05, R06), they are output to D0~D7 either regardless of $\overline{\mathrm{IRQ}}$ status, or while only $\overline{\bar{R} Q}$ terminal is active. Orals according to the setting of the internal registers, the D0 \sim D7 may remain at the high impedance state.

6.2.3. $\overline{\mathrm{IC}}$

The YM3523 is initialized by holding the input to the $\overline{\mathrm{IC}}$ pin at the L level for 32 TCLK or more.

6.3 Transmit/receive interface

Since terminals TxD, TxF, RxD and RxF are set for interface at the TTL level, an appropriate circuit is required to provide interface to the level of the MIDI, RS232C and audio line.

ELECTRICAL CHARACTERISTICS

Absolute maximum ratings

Power supply voltage	$-0.3-+7.0$	V
Input voltage	$-0.3-\mathrm{VDD}+0.5$	$\mathrm{~V}^{\circ}$
Operating ambient temperature	$-25-85$	${ }^{\circ} \mathrm{C}$
Storage temperature	$-50-125$	${ }^{\circ} \mathrm{C}$

Recommended usage conditions

Item	Symbol	Min	Standard	Max	Unit
Power supply voltage Operating ambient temperature	T OD Op				

Electrical characteristics

(A) D C characteristics
(Input terminal)

Item	Symbol \& Condition	Min	Stand	rd Max	Unit
Low level input voltage	VIL	-0.3	-	0.8	V
High level output voltage V IH		2.0	-	UDO +0.5	V
Input leakage current	ILI V\| $=0 \sim 5 \mathrm{~V}$ (Except for the pins with pull-up registers)	-	-	10	$1 / \mathrm{A}$
Pull-up register	Ru (TESTO $\frac{\text { TEST2 }, \overline{I C}) ~}{\text { TE }}$	100	-	1000	$K \Omega$

(Output terminal)

Item	Symbol \& Condition	Min	Standard	Max	Unit
Low level output voltage	$\begin{aligned} & \text { VOL } \quad I O L=2 \mathrm{~mA} \\ & \quad(P O \sim P 7, D O \sim D 7, \overline{I R Q}) \end{aligned}$	V SS	-	0.4	V
Low level output voltage	$\mathrm{VOL} \quad \begin{aligned} & \mathrm{I} O \mathrm{~L}=1 \mathrm{~mA} \\ & \begin{array}{l} \text { Output terminals other than } \\ \text { shown above } \end{array} \end{aligned}$	V SS	-	0.7	V
High level output voltage	$\begin{array}{rl} V O H & I D H=-1 \mathrm{~mA} \\ & (\text { Except for } \overline{\mathrm{IRQ}}) \end{array}$	4.0	-	V00	V
Output leakage current	IOL $\mathrm{VO}=0 \sim 5 \mathrm{~V}$	-	-	10	$1 . \mathrm{A}$

(Power supply terminal)

Item	Symbol	Condition	Min	Standard	Max	Unit
Power supply current	I DP	$\mathrm{VDD}=5 \mathrm{~V}$	-	6	10	mA

(Capacitance)

Item	Symbol	Condition	Min	Standard	Max
Input capacitance	C 1	$\mathrm{f}=1 \mathrm{MHz}$	10	pF	
Output load capacitance	C L 1	PO~P7,D0~D7,TRO	100	pF	
	C L 2	Output terminals other than shown above	50	pF	

(B) AC characteristics
(CLK input)

Symbol	Item	Min	Max	Unit
T CC	CLK Cycle time	250	2500	n sec
T HC	CLK H level setup time	100	-	n sec
TLC	CLK L level setup time	100	-	n sec
T RC	CLK Build up time	--	20	n sec
T FC	CLK Release time	--	20	n sec

(CLK input and output pins) (CLICK, SYNC, TxF, TxD, $\overline{\mathrm{IRQ}}$)

Symbol	Item	Min	Max	Unit
T DCC	CLK-CLKI Delay time	-	$\boxed{3} 0$	n sec
T DOC	CLK-output change over delay time	-	100	n sec

(Register write)

Symbol		Item	MIN	MAX
T SAW	Address setup time	20	-	Unit
T HAW	Address hold time	20	-	n sec
T WW	CS \cdot WR Pulse width	100	-	n sec
T SDW	Data setup time	50	-	n sec
T HDW	Data hold time	20	-	n sec

(Register read-out)

Symbol	Item	MIN	MAX	Unit
T SAR	Address setup time	20	-	n sec
T HAR	Address hold time	20	-	n sec
T SRC	CS \cdot WR Setup time*	0	-	n sec
T HRC	CS \cdot WR Hold time*	150	-	n sec
T ADC	Data access time*	-	150	n sec
T HDR	Data hold time	5	-	n sec

* : Time to the CLK
(IRQ vector read-out)

Symbol		Item	MIN	MAX
T SVC	$\overline{\text { VR Setup time* }}$	Unit		
T HVC	$\overline{\text { VR Hold time* }}$	0	-	n sec
T ADC	Data access time*	150	-	n sec
T HDV	Data hold time	-	150	n sec

* : Time corresponding to the CLK
(I/O port output)

Symbol	Item	MIN	MAX	Unit
T SCW	Clock setup time	70	-	n sec
T SWC	$\overline{\text { CS } \cdot \text { WR Setup time }}$	0	-	n sec
T APC	I/O port hold time	100	-	n sec

(I/O port input)

Symbol	Item	MIN	MAX	Unit
T SCR	Clock setup time	70	-	n sec
T SRC	$\overline{\text { CS } \cdot \text { RD }}$ setup time	0	-	n sec
T SPC	I/O port setup time	0	-	n sec
T HPC	I/O port hold time	100	-	n sec

Terminal input (CLKM, CLKF, $\mathrm{R} \times \mathrm{D}, \mathrm{R} \times \mathrm{F}, \overline{\mathrm{I}}$)

Symbol	Item	MIN	MAX	Unit
T SIC	Input signal setup time	0	-	n sec
T HIC	Input signal hold time	70	-	n sec

(Note 1): Perfect operation of the $\overline{\mathrm{IC}}$ requires sampling on the \mathbf{L} level 32 times.
(Note 2) : At least one sampling is made if the setup period for the L-or H-level is T CLK or more.

O CLK input, CLKI output and other output pins

Register write

Register, vector read-out

O I/O port output

Appendix A. Pin Configuration

VDD	1	40	CLK
$\mathrm{R} \times \mathrm{D}$	2	39	C.KI
R×F	3	38	$\overline{\text { TEST-2 }}$
CLKM	4	37	ז
CLKF	5	36	$\overline{\mathrm{RQ}}$
T×D	6	35	$\overline{V R}$
T×F	7	34	$\overline{\mathrm{RD}}$
STMC	8	33	WR
CLICK	9	32	$\overline{\mathrm{CS}}$
$\overline{\text { TEST-O }}$	10	31	A2
TEST-1	11	30	A1
P7	12	29	AO
P6	13	28	D7
P5	14	27	D6
P4	15	26	DS
P3	16	25	D4
P2	17	24	03
P1	18	23	D2
PO	19	22	D1
V'ss	20	21	DO

Appendix B. Block Diagram

Appendix C. Register Map

$A 2, A 1, A O=000$		001	010	011	100	101	110	111
group-0	ROO IVR	RO1 RGR	RO2 ISR	ROJ ICR	RO4 10R	805 M (R	R06 !ER	(1/1/1/1/
1					R14 OMR	R15 OCR	R16 OSR	R17 DNR
2					R24 RRR	R25 RMR	R26 AMR	R27 ADR
3					R34 RSR	R35 RCR	R36 R0R	1717117
4					R44 TRR	R45 TMR	(1, $1 / 1 / 1 / 4 / 1 / 1 / 1$	
5					R54 TSR	RS5 TCR	RS6 TOR	(1/1/1/1
6					R64 FSR	R65 FCR	R66 CCR	R67 CDR
7					R74 SRR	R75 SCR	276 SPQL	R77 SPRH
8					R84 GTRL	K85 GTRH	R86 MTRL	R87 MTRH
9					894 SDR	RYS EOR	RO6 ERR	C//1/1/1/

Appendix D. Table of Register Functions

ROO IVR	R (1RQ yector	
$\begin{gathered} 67 \\ 3 \\ 65 \end{gathered}$	IRQ vector offsel	same to R04-67-b5
$\begin{gathered} b 4 \\ b \\ \text { b1 } \end{gathered}$	IRO vector appairs according to the active, highest priority, and enabled IRQ. priority: $\mathbb{R} 0-7 \times \operatorname{RO} 0-6>\ldots$	0000: $\mathbb{R} 0-0$ MIDI real-time message delected (F9~FD) 0001: $\mathrm{IRO}-1$ Click Counter / MIDI-clock delected 0010: RRO-2 Play-back counter 0011: IRO-3 Recording counter 0100: $1 R 0-4$ Ofr-line detected / break detected 0101 : RQQ-5 FIFO-Rx resdy 0110 : RRO-6 FIFO-Tx empty 0111: $\mathbb{R O}$-7 Oenersl Timer 1000: caused by external requests (other than MCS itsell)
60		-1wny: 0

R02 ISR	R IRO status	
b7	IRD status 0 : inactive 1: active	1RO-7 General Tisner
D6		IRO-6 FIF O-Tx emply
D5		IRO-5 FiFO-Rx ready
b4		IRO-1 Uff-line detected/Break detected
D3		RRO-3 Recording Counter
b2		1RD-2 Play-back Counler
b1		IRO-1 Click Counter / MIDI-clock detected
80		IRO-0 M1OI reat-time message detected (F9-FD)

R03 ICR	W ${ }^{\text {W }}$ IRQ clear request	
67	IRQ clear request write I to clear earch $\mathbb{R O}$	1120-7 Genersl Timer
b6		IRO-6 Fif O-Tx empty
b5		IRO-5 fif $0-R x$ ready
64		IRO-4 Off-line detected / Break detected
63		RRO-3 Recording Counler
62		RRQ-2 Play-back Counter
bl		IRQ-1 Click Counter / MIDI-clock delected
60		IRO-0 MIDI real-time message detected (F9~FD)

R04 IOR	W IRQ vector offset request	
b7 bs	IRQ vector offset	IRO vertor offsel for R00-67-b5
b4		
ROS IMR	W W ${ }^{*}$ IRO mode control	
67 64 6		
$63 \mathrm{C} / \mathrm{T}$	select IRO-1 source	0:Click Counter 1:MIDI-clock detected
b2 0/B	select $1 R 0-4$ source	0 : Ofr-line delecled 1: Break delected
b1 VE	enable vector oulput	0 : disable 1: enable
bo VM	select vector output timing	0 : while own $\overline{\mathrm{R}} 0 \mathrm{p}_{\text {pin }}$ active $\quad 1:$ always

R06 IER	W (RO enable request	
67	IRO enable request 0 : IRO-n disable 1: $\mathbb{R} \mathbb{R}$-n enable to activate $\mathbb{R O}$ pin and to sel IRD yector.	IRO-7 General Timer
b6		IRO-6 FiFO-ix emoty
65		IRO-5 FiFO-Rx ready
b4		IRO-I Orf-line delected / Bresk detected
b3		iRO-3 Recerding Counter
62		IRO-2 Play-back Counter
$b 1$		IRO-1 Click Counter / M101-clock detected
60		IRO-0 MICI real-time message detected (f9~FD)

R14 OMR	W MIDI real-time message contral	
$\begin{aligned} & b 7 \\ & 36 \\ & 66 \end{aligned}$		
65 ASE	enable auto active-sence (FE)h output	0 : disable 1 : enable
64 MCE	enable auto MIDI-clock (8 Q) h output	0 : disable 1 : enable
b3 CDE	enable MIDI-control (F9~FD) h detection	0 : disable 1 : ensole
62 MCDS	select MIDI-clock for distributor	$0: F$ IFO-IRx 1: user
$\begin{aligned} & \text { bi MCFS } \\ & \text { bo } \end{aligned}$	selec: MIDI-clock for FIFO-iRx	00 : (inhibited) 01 : MIDI message Delector 10 : SYNC Delector 11 : MIDI-clock Timer

R15 OCR	N	MIDI real-tine message request	
b7 Tx	terget block of message write I to send message, but clock (I8) his always sent to all blocks.		FIF O-ITx
b6 SYINC			SYNC Controller
bS CC			Click Counter
64 PC			Play-back Counter
b3 RC			Recording Counter
$\begin{aligned} & \text { b2 } \\ & \text { b } \end{aligned}$		enls of message	000 : (F8)h - clock 001:(F9)h 010: (FA)h - start 011:(F8)h - stop 100:(FC)h - continue 101:(FD)h 110: (inhibited) 111: (inhibited)

R16 DSR	R	FIFO-IRX data	
b7	FIFO-12x data		FiFO-Rx data (0 is set while empty)

R17 DNR	W	FIfO-1Rx control	
b7 bi			
60 CLX		-18x increment clock	write 1 to increment FIFO-IRx

R24 RRR	W Rx communication rale	
b7		
b5 R×0if	select Receiver input connection	$0: R \times 0 \quad 1: F S K$ demodulator
$\begin{gathered} \text { bA } \\ \text { bo } \end{gathered}$	$\begin{aligned} & \text { commurication raty } \\ & \begin{array}{l} \text { in } C L K M \\ C L K F \end{array}=6.5 \mathrm{MHz} \\ & \text { CLK } \end{aligned}$	$00 \times x \times: C L K M / 16$ $(31250 \mathrm{bps})--\mathrm{inhibited}$ while $R \times D / F=1$ $01 \times \times x: C L K M / 32$ $(15625 \mathrm{bps})--$ inhibited while $R \times D / F=1$ $10 \times \times x: C L K F / 32$ $(19200 \mathrm{bps})$ $11000: C L K F / 64$ $(9600 \mathrm{bps})$ $11001: C L K F / 128$ $(4800 \mathrm{bps})$ $11010: \mathrm{CLKF} / 256$ $(2400 \mathrm{bps})$ $11011: \mathrm{CLKF} / 512$ $(1200 \mathrm{bps})$ $11100: \mathrm{CLKF} / 1024$ $(600 \mathrm{bps})$ $11101: \mathrm{CLKF} / 2048$ $(300 \mathrm{bps})$ $11110: \mathrm{CLKF} / 4096$ $(150 \mathrm{bps})$ $1111: \mathrm{CLKF} / 8192$ $(75 \mathrm{bps})$

R25 RM1R	* Rx communication mode	
b7	-	
65 RxCl	select daiz bit length	$0: 8$ bit $1: 7 \mathrm{bit}$
b4 PXPE	enabie parity-bit check	0 : dissble 1 : ensble
b3 R×PL	select parity-bil length	$0: 1 \mathrm{bit}$
$02 \mathrm{R} \mathrm{\times E} / 0$	select parity-bil polarity	0:eren 1: odd
b) Rxic	select stop-bit length	$0: 1 \mathrm{bit}$ 1:2 bil
bo RxST	select stoo-bit type in 2 bit length	$0: \mathrm{HH} \quad 1: \mathrm{LH}$

R26 AMR	ϑ Address-hunter control (1)		
b7 1DCL	select 10 code length	0 : maker-1D only	1:maker-10 \& device-10
66 60 60	define maker-ID code	7 bit maker-10 code	1.maker-10 \& device-10
R27 ADR	* Address-hunter control (2)		
67 日RDE	enable broadcast	0 : dis able	1 : enable
b6	define derice-10 code	7 bit derice-10 code	

R34	RSR	R		
67	$\mathrm{R} \times$ RDY	FiF O-Rx ready fag	0 : empty	1:data ready
66	RxOV	Fifo-Rx overflow delected flag	0:-	1:overfow delected
b5	$R \times F$	framing error nag	0:-	1:framing error delected
b4	$\mathrm{R} \times \mathrm{P}$	parity error nag	0:-	1 : parily error delected
b3	BRK	break detected flag	0:-	1: break delected
$b 2$	$\mathrm{R} \times \mathrm{OL}$	ofr-line detected flag	0:-	1 : off-line delected
bl	AHBSY	Address-hunter busy fag	0 : Address-hunter idle	1: Address-hunter busy
b0	$\mathrm{R} \times \mathrm{BSY}$	Receiver busy nag	0:Receiver Idle	1 :Receiver busy

R35 RCR	$*$ Fifo-Rx control	
b7 R×C	clear FIF 0-Rx	write 1 to clear FIfO-Rx
b6 RxOVC	clear over now de lected तag	write 1 to clear fiag
65		
b4 flie	eneble M1Di-alock filter	0 :disabie 1 : enable
b3 BLKC	clear break delecled flag	wrile 1 li clear fag
b2 R×01C	clear off-line detected flag	write 1 to clear fag.
bl AHE	enable Address-hunter	0 : disable 1 : enable
b0 RxE	enable Receiver	0 :disable 1 :enable

R36 RDR	R	FIFO-Rx data	
67	gel data from FiF O-Rx		8 bit data
DO		increment FIFO-Rx	

R45 TMR	w Wx communication mode	
$\begin{aligned} & 67 \\ & 66 \\ & 66 \end{aligned}$		
b5 TxCL	select data-bit length	$0: 8 \mathrm{bit}$
b4 TXPE	enable parity-bil generation	0 : disable $1:$ pnable
63 TxPL	select parily-bit iength	$0: 1$ bit $1: 4 \mathrm{bit}$
b2 TxE/0	select parily-bit polarity	0:eren 1:odd
b1 $T \times S L$	select stop-bit length	0:1 bil $1: 2 \mathrm{bit}$
bo $\mathrm{T} \times \mathrm{ST}$	select stop-bit type in 2 bil length	0: HH

R64 FSR	R ${ }^{\text {R }}$ [SK status	
57 RxfS	R×F pin status	0:L leyel $1: \mathrm{H}$ level
b6 SS	demodulaled serial signal status	0: space (L) 1:mark (H)
b5 CSF	carrier slow detected flag	$0:-\quad 1$:carrier slow delecled
b4 CFF	carrier fast detected fag	0:- 1 : carrier fast delected
63 3 62		-
bl PS	polarity status	0 :pasilive 1 : negative
bO PDF	polarity detected flag	0:- 1 :polarity detected

R65 FCR	W ${ }^{\text {W }}$ FSK contral	
b7 11E	enable liodulator	0 : disable 1 : enable
66 6 65		-
b4 CFC	clear carrier S/F detected flag	wrile 1 to clear nag
b3 DE	enable Dernodulator	0 : disabie itenable
b2 APD	disable aulo polarity delector	0 : enable 1 : disable
b) P/N	sel polarity by manual	0 :positive 1 : negative
bO POFC	clear polarity delected flag	Write I to ciear nag

R67 CDR	W	Click Counter value
b7 LD	imediate losd request	wrile 1 to loas imediately
b6	inlerval count data	7 bil data
bo		0

- 16 TCLK is needed to access R67 continuously

R74 SRR	R	Recording counter current yalue	
b7	current value		data
R75 SCR	W	Interpolator control	
b7			
65 ADO	Play-back Counter addition request		write 1 to add
64 CLR	Play-back Counter clear request		write 1 to clear
b3	interpolation rate		data --- $(0000) \mathrm{b}$ is inhibited
R76 SPRL	W	Play-back Counter value (H)	
67 60	lower 8 bit data to add		data
R77 SPRH1	W	Play-back Counter value (11)	
67		-_-	
b6 bo bo	high	$r 7$ bit dala to add	dala

* 16 TCLK is needed to access any register of R74~R77 continuously. except for sccessing R76 then R77

R84 GTRL	W	General Timer yilue (L)	
b7 b0	lower 8 bit data	data (unit: 8 msec. [RO occurs when count becomes 0.)	

R8S GTRH	W		
b7	General Timer yalue (H)		
D6	imediale load request		
bS bO			

R86 MTRL	W	MiDI-clock Timer valuy (L)	
b7	lower 9 bit data	data (unit : 8 msec. IRQ occurs when data is loaded.)	
b0			

R97 MTRH	W	MIDI-clock Yimer value (M)	
$b 7$ LD	imediale load request	write 1 to load value (data is loaded while 32TCLK passed.)	
$b 6$	higher 6 bit data		
b5 b0	data (unit $: 8 \times 256$ msec.)		

* count unit is ;
$(4$ TCLKM in R66-01 $=0(C L K M=0.5 M H z) .4 T$ CLKM $16 T C L K$
8TCLKM in R66-b1=1(CLKM=1.0MiHz), 91 CLKM1 16 TCLK lgram
* 16 TCLK +8 CLKKM is needed to access any register of R84~R87 continuously,
except for accessing R84 then R85, or R86 then R97
$*(00000000000000)$ o or (00000000000001) b is inhibited

R94 S0R	W		
b7 s b0	direction of earch $1 / 0$ port	0 : input	1 : output

R95 EOR	W	External $/ / 0$ output data	
D7 s $B 0$	output request of earch $1 / O$ port	$0: L$ level	$1: H$ level

| $R 96 E I R$ | R | Exterial $1 / 0$ input data | |
| :--- | :--- | :--- | :--- | :--- |
| b7 | | | |
| SO | pin leyel of earch $1 / 0$ port | $0: L$ level | $1: H$ leve: |

Appendix E. Table of IRQ Setting/Cleaning Conditions

IRQ level	Setting condition	Clear condition	Clear influence
IRQ-7 General Timer	When the timer reaches a count of zero.	-	-
$\begin{array}{\|l\|} \hline \text { IRQ-6 } \\ \text { FIFO-Tx empty } \end{array}$	When the FIFO-Tx becomes empty through the data extraction by the transmitter.	When the FIFO-Tx is load with data.	-
IRQ-5 FIFO-Rx ready	When the empty FIFO$R x$ is loaded with data.	When the FIFO-Rx becomes empty.	-
$\begin{array}{\|l\|} \text { IRQ-4 (1) } \\ \text { Off-line detect } \end{array}$	When the reception is not made for 300 msec .	When 1 is written into RxOLC (R35-b2).	RxOL (R34-b2) is cleared.
IRQ-4 (2) Break detect	When the receiver serial input is at the L-level for two-character period.	When 1 is written into the BRKC (R35-b3).	BRK (R34-b3) is cleared.
IRQ-3 Recording Counter	When the count value of the recording counter is zero.	-	-
IRQ-2 Play-back Counter	When the count value of the playback counter is zero or negative.	-	-

* In addition, each IRQ is cleared by initial clear and by writing a value of 1 into the corresponding bit of R03.

Setting conditions, clearing conditions, clearing influence of each IRQ.

IRQ level	Setting condition	Clear condition	Clear influence
IRQ-1 (1) Click Counter	When its count value reaches zero in the case of being selected as the factor of the IRQ-1.		
IRQ-1 (2) MIDI-clock detect	When the oldest data of the FIFO-IRx becomes the (F8)h in the case of being selected as the factor of the IRQ-1.		
IRQ-0 MIDI real-time message detect	When the oldest data of the FIFO-IRx becomes the (F9)h ~ (FD)h.		

* In addition, each IRQ is cleared by initial clear and by writing a value of 1 into the corresponding bit of R03.

Setting conditions, clearing conditions, clearing influence of each IRQ.

Appendix F. Circuit Example(s)

Appendix G. Sample Program

280.i6080 ass.vr-1.2 23-DEC-34 17:57 PaGE,

[^2]$x \times 111$
PAGE

1 d	a, i
push	a \dagger
di	
1 d	a, 5
out	(MIREG1), a
10	a, (:IVTXCN)
and	11111110 n
out	(NIREGS), a
in	a, (HIREG6)
and	1
jr	nz, MLCH10
$1 d$	a, 4
out	(MIREG1),
1 d	a, (de)
out	(MIREG4), a
inc	de
10	a, (de)
out	(HIREGS), ${ }^{\text {a }}$
$1 d$	a, 3
out	(MIREG1), a
10	a, (MVRXCN)
and	11111110b
cut	(HIREGS), ${ }^{\text {a }}$
in	d, (MIREG4)
and	1
ir	n2, MLCH2C
inc	de
1 d	a, 2
out	(HIPEG1), d
1 d	a, (de)
out	(MIREG4), a
inc	de
1 d	a, (de)
out	(MIREG5),a
inc	de
1 d	a, 3
out	(MIREG1), ${ }^{\text {a }}$
ld	a, (de)
or	00000001 b
out	(MIREGS), a
1 d	(MVRXCN), ${ }^{\text {a }}$
1 d	a, 5
out	(MIREG1), a
1 d	د, (MVTXCH)
out	(MIMEGS), a

z80.i8050 ass.vr-1.2 23-DEC-8:

\ddot{O}
$\underset{U}{U}$
$\underset{Z}{Z}$
$=$

XXI

 ニ

MIREG3	0003
MLCN10	4117
MLYX10	$41 E 8$
MSIRUS	$42 E 1$
MSIS1O	$42 F 3$
MVHOOK $=$	$0 F 00$
MVRXBI $=$	$110 E$
M.CCVL	4148
M.HOOK	4082
M.RCLK	4187

"
" 11 "

오
" "
" " "

11
"い!

" 1111

The specifications of this product are subject to improvement changes without prior notice.

-YAMAHA CORPORATION-
Address inquiries to:
Electronic System Division

- Toyooka Factory 203, Matsunokijima, Toyooka-mura, Iwata-gun, Shizuoka-ken, 438-01 Electronic Equipment business section Tel. 053962-3125
- Tokyo Office 3-4, Surugadai Kanda, Chiyoda-ku, Tokyo, 104 Ryumeikan Bldg. 4 F
Tel. 03-255-4481
1-16, Shin-ashiyashimo, Suita-shi,
Osaka, 565
Tel. 06-877-7731
YAMAHA International Corp. 6600 Orangethorp Ave.
Buena Park California 90620

[^0]: * 16 TCLK is needed to access 3ny register of $R 74 \sim R 77$ continuously,
 except for accessing $R 76$ then $R 77$.

[^1]: * count unit is;
 $4 \mathrm{~T}^{\mathrm{CLKM}}$
 $\left(\begin{array}{l}4 \mathrm{TCLKM} \text { in } R 66-\mathrm{bl}=0(\mathrm{CLKM}=0.5 \mathrm{MHz}),{ }^{4 \mathrm{~T}} \mathrm{CLKM}>16 \mathrm{TCLK} \\ 8 \mathrm{TCLKM} \text { in } \mathrm{R} 66-b 1=1(\mathrm{CLKM}=1.0 \mathrm{MHZ}), 8 \mathrm{CLKM}>16 \mathrm{TCLK}\end{array}\right.$

 | R87 MTRH | W | MIDI-clock Timer value (H) |
 | :--- | :--- | :--- |

 | R87 MTRH | M MIDI-clock Timer value (H) | |
 | :--- | :--- | :--- |
 | b7 LD | imediate load request | write 1 to load value (data is loaded while 32TCLK passed.) |
 | b6 | | |
 | b5 | higher 6 bit data | data (unit $: 8 \times 256$ msec.) |

 (16TCLK
 $* 16 T C L K+8 T C L K M$

 * 16 TCLK +8 PTCLKM is needed to access any register of R84~R87 continuously,
 excepi for accessing R84 then R85, or R86 then R87.
 $*(00000000000000)$ or (00000000000001) is

[^2]: $\frac{z}{x}$

